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Abstract

We show that the Classical Constraint Algebra of a Parametrized Relativistic Gauge System
induces a natural structure of Conformal Foliation on a Transversal Gauge. Using the theory of
conformal foliations, we provide a natural Factor Ordering for the quantum operators associated
to the canonical quantization of such gauge system.
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1. Introduction

The purpose of this paper is to show that the theory of Conformal Foliations, as de-
veloped a few years ago by Montesinos, Vaisman, and others, helps the understanding of
Constraint (Dirac) Quantization of Parametrized Relativistic Gauge Systems by providing
a natural solution for the so-called Factor Ordering Problem in the Quantum Operators
corresponding to the Classical Constraints H, = 0 = H (see discussion in [8,5]).

We follow HajidkRtchai’s  philosophy, developed in a series of papers (see [5-S]).
but here we adopt modem differential geometric methods (in the spirit of [ 121 or [ 13 1)
to construct the natural quantum operators and deduce the corresponding Commutator

Algebra. We hope that the use of the theory of conformal foliations helps to clarify the
essential unique geometric character of Hajic&/KuchaYs  quantization method, as well as
the naturality in the choice of the quantum operators.

The paper is organized as follows. In Section 2, we redefine the model, introduced in [5],
of Parametrized Relativistic Gauge System (where it will be called only a Gauge System).

’ E-mail: jntavar@fc  1 .fc.up.pt.

0393~0440/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved
SSDI 0393-0440(95)00018-6



382 J.N. Tavares/Journal of Geometry and Physics 18 (1996) 381-402 

using symplectic geometry (see [1], [3] or [4]). Section 3 discusses the Transversal Geom- 
etry of the Gauge Foliation .T, in terms of the choice of a transversal distribution T,  and 

shows that the mathematical structure deduced from the classical Constraint Algebra (9), 

(10), is that of a conformal foliation with Complementary Form )~ ----- - I 2  (see Definition 
4.1). Section 4 reviews the geometry of conformal foliations following closely [ 10,14]. We 

introduce a Conformal Curvature Tensor C (see (61)) and the unique g-Riemannian con- 
nection V on (T, g) such that C is conformally invariant (see Theorem 4.4). In particular, 

this seems to be the connection introduced in [6] using a substantial different formalism. 

Then, we define a Scalar Curvature S (see Definition 4.11), a Transversal Laplacian (see 
Definition 4.13), constructed from the above-mentioned connection, and deduce some use- 

ful identities (see Lemmas 4.8, 4.10 and 4.12). Finally, in Section 5, we implement the 
Constraint (Dirac) Quantization Program, defining the quantum operators and computing 
the Quantum Commutator Algebra (see Theorems 5.1 and 5.4). The more relevant formulas 

are deduced in Appendix A. 

2. Symplectic geometry of gauge systems 

The situation we have in mind is the following. Let M be an (N + 1)-dimensional smooth 

manifold, T*M its cotangent bundle, together with its canonical symplectic form w ---- d0, 
and (C°°(T*M), {, }) the Poisson algebra of C~-functions on T*M. 

Assume that we have a v-dim integrable distribution D (a subbundle of TM)  and let.T be 
the corresponding foliation on M. The leaves of ~ describe Gauge Equivalent or physically 
indistinguishable configurations on M. We call the pair (M, .T) a Gauge System. When .T 

is simple, then m -- M/.T  is called the physical space and T*m the physical phase space 

of the gauge system. 
We consider now a special subalgebra of (C~(T*M) ,  {, }), consisting of functions, at 

most Linear in Momenta, linearly generated by the following two types of functions. 
(i) Configuration Functions - functions F c C ~ ( M ) ,  identified with their pullbacks to 

T*M. 
(ii) Momentum Functions - to each vector field X E X(M)  we associate the corresponding 

Momentum Function .Ix defined by 

Jx(OtQ) = OlQ(XQ), VOlQ ~ T*M.  (1) 

The following Poisson brackets characterize the kinematics of the system. 

Proposition 2.1 ([ 1 ]). 

(i) {El, F2} = 0, 
(ii) {F, Jx} = X 'F ,  

(iii) {Jx, JY} = -J[x,  YI, 

VFI, FX E C°°(M), VX, Y ~ 2d(M). 
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In particular, we consider momentum functions of  the form Jx with X ~ F D  (i.e., X 

is a vector field on M, tangent to .T') which we call Constraint Functions. They form a 

subalgebra of  (C°°(T*M), {, }) called the (linear) Gauge Algebra G of the system. Using 
this, we define now the Constraint Set C C T*M by 

C = {OtQ E T ' M :  Jx(OtQ) = 0 ,  VX E F79}. (2) 

Note that C is the subbundle D o of T* M, consisting of the covectors that vanish on 79 and, 
therefore, that C is a coisotropic submanifold in T*M (a first class constraint set, in Dirac's 
terminology). When we consider the closed 2-form i 'co (where i : C --+ T*M is inclusion), 

we see that it is degenerate and its characteristic distribution K~ = ker(i*co) is integrable and 
locally generated by the Hamiltonian vector fields associated to the constraint functions. 

The quotient (if it exists) of  C by the characteristic foliation determined by K~, S = C/1C 

has a unique symplectic form cos such that Jr* cos = i* co (see [ 1 ], [3] or [4]): 

i 
C ~ T*M 

s = c / ~  

Also if F1, F2 E C ~ ( T * M )  are two functions constant on the leaves of the character- 
istic foliation, i.e., such that i*Fk = 7r*J~, (k = 1, 2), for uniquely determined functions 

f l ,  f2 E C ~ ( S ) ,  then 

i*{Fl, F2} = 7r*{fl, f2}s.  (3) 

Under certain regularity assumptions, we know that ($,cos) is symplectomorphic to 

(T 'm ,  corn = dOm) and so, it is the natural candidate for the physical (or reduced) phase 

space of the physical system (see [3]). 
Now we assume that the intrinsic dynamics of  our gauge system is generated by a 

quadratic function in momenta of  the form 

H =  ½ G + Ju + V, (4) 

where G is a contravariant metric (eventually degenerate) on M, viewed as a function on 
T ' M ,  U ~ P((M) is a vector field in M and V ~ C~(M) .  We have the following Poisson 

brackets, involving the new kind of homogeneous quadratic function G. 

Propos i t ion  2.2 ([ 1 ]). 
(i) {G, F} = --2Jgradc F, where gradG F is the vector field G ( d F ,  .) 6 P((M), 

(ii) {G, Jx} : L xG,  the Lie derivative of  G in the direction of  X E X(M) ,  

VF E C°~(M), YX ~ P((M). 

Now we consider the equations of  motion, which follow from the canonical action prin- 

ciple, for a parametrized gauge system: 

S(QA, pA;N,  NC~)= f d t ( P A O A - - N . H - - N a . H ~ )  > stat., (5) 
J 
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where (QA, PA) are the local canonical coordinates in T ' M ;  N, N ~ Lagrange multipliers 

and Hu = Jx~ are the momentum functions associated to a local basis Xa (~ = 1 . . . . .  v) 
of the Gauge Distribution 79 on M. 

Following the physical terminology, we call the Ha the Supermomentum Functions and 

H the Superhamiltonian of the (parametrized) gauge system (see [5] for discussion and 
examples). 

Variation with respect to QA and PA yields the Hamiltonian equations; while variation 

with respect to the Lapse Function N and the Shift Vector Field N u, leads to the constraints 

H = 0 = Hu. (6) 

So, we recover the Kinematical Constraint Set C, defined in (2), together with a new 

Dynamical Constraint H = 0, that reveals the fact that the system is invariant under 
external time reparametrizations. 

Assume that Co = H - l ( 0 )  is a submanifold of T*M. Since codim Co = 1, Co is 

coisotropic and is foliated by the trajectories of XH (the Hamiltonian vector field asso- 
ciated to H)  that represent the evolution of the system. For consistency, we assume that 

the full set of constraints (6) is preserved by the dynamics, which means that Co N C is 
coisotropic, i.e., we have 

{H, Ha} = Cul l  + C~H#, (7) 

where Ha = Jx .  are the supermomenta associated to a local basis Xa of 79, C,~ 6 C °° (M) 
and C~ E C ~ ( T * ( M ) )  is at most linear in momenta. If the local basis X~ for 79 verifies 

[xa ,  x #] = - r ~ x  r (8) 

with F~# E C°°(M), then the Algebra of  Constraints H = 0 = Ha has the following 
(open) structure: 

{Hu, H#} = F~#Hy, (9) 

{H, Hal = Cal l  + C~HI3, (10) 

H is given by (4) and, working equality (10), using Propositions 2.1 and 2.2, we conclude 
the following identities for the Lie derivatives in Gauge Directions: 

LuG = CaG(mod I); (l l) 

LuU = CaU (mod I); (12) 

LuV = CuV, (13) 

where I is the ideal of the contravariant tensor algebra (~  TM,  generated by F79 and La is 
Lie derivative in the direction of Xa E F79. So, this Lie derivative rescales the fields by a 
common factor and adds certain elements from I. 

All the conclusions about the physical content of the gauge system described by the above 
model, must be deduced only from intrinsic data, namely, from the Kinematical Constraint 
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C, determined by the foliation ~', and the Dynamical Constraint Co, given by H = 0. So, 

they must be invariant under transformations that preserve these data. We impose also that 

these transformations preserve the polynomial character (in momenta) of the constraints 
(this will be needed for the quantization program, as we shall see later, and is related to Van 

Hove's theorem (see [1, Section 5.4])). So, they must be a combination of the following 
three types of transformations: 

(a) Change in the local basis for D: 

Xc~ --+ X~ = A~X#, (14) 

where A~ e C a ( M ) ,  det A~ # 0, with the corresponding change in supermomenta, 

Ha ~ -Hu = A~H~. (15) 

(b) Gauging the superhamiltonian: 

H ~ H : H + AC~Hc~ (16) 

with A ~ • C~(T*(M)) ,  at most linear in momenta. 
(c) Scaling the superhamiltonian: 

H ~ H = eS2H (17) 

and e s2 • C°~(M). To preserve the signature of the metric we only allow positive 
scalings. 

Note that the above transformations do not leave invariant the superhamiltonian H, given 

by (4). In fact, after an easy computation, we deduce that,.if 

14 -H = + J o + V 

then 

-G = eS2 (Q)G (modl) ,  (18) 

-U = eS2 (Q)U (modl) ,  (19) 

T = e~2(Q)V. (20) 

Let us say that two superhamiltonians H = ½G + Ju + V and -H = ½G + Jo + V,  are 
Conformally Equivalent (mod I), if they are related through (18)-(20). 

Then we conclude that the above transformations (a)-(c), leave invariant the conformally 

equivalence class (rood I) of the superhamiltonian. 

3. Transversal geometry of b r 

The transversal geometry of ~- is infinitesimally modeled by the normal bundle T M/D.  
We make a choice of a transversal subbundle T to D, 

ToM = ~)Q (~ "-fQ (21) 
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which identifies T M / D  ~- 7-. Vectors on D are called Longitudinal and vectors on 7- are 
called Transversal. Associated to (21), we have two projectors 

Id = PII ~) P±, (22) 

a decomposition 

TQ*M = DO* @ 7-Q* (23) 

with 7"~ ~ D~,  and the two corresponding projectors 

Id* = PIP* (9 P±*. (24) 

We can form various tensor products of these projectors, using them to project the various 

tensors into longitudinal and transversal parts. In particular, the choice of the Transversal 
Gauge 7- allows us to define the Transversal Superhamiltonian H± by 

H i  = I G± + Ju± + V, (25) 

where 

G± = (/ '1 ® P I ) ( G )  (26) 

and 

U± = P±U (27) 

are the Transversal Contravariant Metric and the Transversal Vector Potential, respectively 
(associated to G and 7-). 

So, the transversal gauge 7- fixes a representative of the equivalence class of super- 

hamiltonians, connected by the Gauging (b), since the difference between two transversal 
projections of the same vector belongs to D. 

Let us compute the constraint algebra in the transversal gauge 7". For this, we compute 
first LaG± and L~U±, using the fact that L,~ is a tensor derivation that commutes with 
contractions, 

L~(C(7"j_ ® t)) = C(L~7"± ® t) + C(7"± ® L~t), (28) 

where C is a contraction, 7'1 a transversal projector (a tensor product of some P± and P±*) 
and t some tensor field on M. 

Define for each or,/3 6 {1 . . . . .  v} a transversal 1-form (i.e., a form which annihilates 
longitudinal vectors) co~ by 

~o~ = (L~ P~)(O~), (29) 

where 0 ~ 6 1-'73" is the dual basis to X~ ~ 1"73. A computation, using local frame fields 
for 73, 7-, their duals and also formula (28) (see Appendix A), shows that 

L~U± = C~U± + co~(U±)X~ = C~U± (modl) ,  (30) 
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LaG± = CaG± + V f  v X~ = CaG± (modl) ,  (31) 

where Vf  = G(o)~, .) is the transversal vector field metric-equivalent to w~, and v denotes 

symmetric tensor product. 

Finally, using (30) and (31) together with Propositions 2.1 and 2.2, we deduce that 

{H±, Ha} = Call± + FfH~,  (32) 

where F~ ~ C°C(T*M) is given by 

Ff  = Jv~ - o,)~(U±). (33) 

Now we arrive at a crucial point - the definition of a l-form O, on M, attached to 

the geometry of the gauge system as specified by the constraint algebra (9) and (I0). So, 

consider the longitudinal I-form 

(0 = CaO a, (34) 

where 0 a 6 F79" are dual 1-forms to the Xa. It is easy to see that O is a globally well- 

defined longitudinal 1-form on M. We want to compute its Foliated Derivative d 2 0  (i.e., 

the derivative along longitudinal directions, see [16]). For this, we first note that Jacobi 

Identity 

cyclsum{H, {Ha, Ht~}} = 0 (35) 

implies the following identity: 

{Ca, H[~} - {Ct3, Ha} = F~C×. (36) 

So, recalling that Ca, F ~  ~ C°°(M), we deduce that 

Lt~Ca - LaC~ = F~C× (37) 

and finally 

d~O(Xa,  X~) = dO(Xa, X~) 

= x a  • o ( x ~ )  - x ~ .  o ( x a )  - o ( [ x a ,  x~]) 
= LaC~ - L~Ca - O ( - F ~ X  z) 

= LaC~ -- L~Ca + F~C× 

O, 

i.e., O is dj:-closed. Recall that a kind of Poincard Lemma (see [ 15]) applies to this case - 
locally, there exists a function $? such that O = dj:X2, i.e., 

O(X)  = Lx$2, VX E FD. (38) 

In particular, for X = Xa, we have 

Ca = Lag?. (39) 
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Consider now the Transversa l  Con t ravar ian t  M e t r i c  ~ = G 179o = G ±  1790 (see Appendix 
A), that we assume to be nondegenerate. Let g be the associated transversal covariant metric 

on T ~ T** ~- D °*. A computation made in Appendix A (see also the note following 

Definition 4.1), shows that 

L u g  = - O ( X a ) g .  (40) 

Find a function S2 that locally verifies (39) and define the rescaled metric ~ by 

= e~eg (41) 

Then we have 

L u ~  = La(eST g)  = ( L~$2 ) ~  + eS? L a g  = C a ~  - C ~ ,  = 0 

and we see that the rescaled metric is foliated (i.e., constant along the leaves of  f ) ,  or, put 

another way, g is locally conformal to a foliated metric. 

According to Montesinos (see [10,11] and Section 4) we say that 5 r is a C o n f o r m a l  

Fol ia t ion and that 

,k = -69  (42) 

is the corresponding C o m p l e m e n t a r y  Form. 

One more point, before closing this section. 

Recall that a choice of  a transversal subbundle T,  fixes a representative H± in the equiva- 

lence class of  superhamiltonians connected by the G a u g i n g  Trans format ions  (b). However, 

we are still free to rescale  the superhamiltonian according to (c). When we do this, and 
compute the new structure functions in (10), we see that 

and 

C a ~ C a = C u + L a ~ 2  (43) 

C~ ~ C~ = e s2 C~. (44) 

Hence we conclude two things: first, the dT-cohomology class [,k] remains unchanged. 
In fact 

69 -- 0 = (Ca - Cu)O a = (L~$2)0  a = dj=g-2. 

Secondly, as ~. = - O  is d~,-closed, locally we can choose a function ~2 such that 
dTS2 = )~, which implies in particular that dTl2(Xa)  = La£2 = ~.(Xa) = - C a ,  and so, 

by (43), Ca = 0, for the corresponding rescaled superhamiltonian H = e ° H .  
If  we can find globally such a I2, i.e., if )~ is d~-exact, then 

L a G  = 0 = L a U  = 0 = L u V  (modl )  (45) 

and so the fields G, U, V are projectable in the (leaf) physical space (when it exists). How- 
ever, note that S2 is defined up to a function w such that d~rw = 0, i.e., up to a basic  f u n c t i o n  

(constant on the leaves of  the foliation ~) .  
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So, when the foliation is simple, we will have a physical superhamiltonian h, defined up 

to a multiplication by a function e w, with w c C°°(M)  a basic function. In other words, 

the gauge system only determines the conformal geometry in the physical configuration 

space. Moreover, in this case, if rr : M ~ m = M / U ,  denotes the canonical projection, 

then, as re. = drr annihilates I, we obtain a class of conformally contravariant tensors 

on m, (e u' • g ,e  w • Pu,e w • v), w ~ C°°(m) and also a class of conformally physical 

superhamiltonians 

{h} : {eW(g + Pu + v): w E Coo(m)}. (46) 

4. Geometry of conformal foliations 

In the last section, we have seen that the gauge system determines the structure of con- 

formal foliation on ,T'. To be more specific, we adopt the following definition from [ 1 0,1 1 ]. 

Definition 4.1. Let M be a manifold, 79 an integrable distribution, T a transversal subbundle 

to 79 and g a covariant metric on T.  We say that (M, 79, T ,  g) is a Conformal Foliation, if 

there exists a longitudinal 1-form ~. such that 

L x g  = )~(X)g, '¢X E 1"79, (47) 

~. is called the Complementary Form of .Y'. 

Note. In Eq. (47), L x g ,  X E 1"79, is defined as in Eqs. (97), (98) of Appendix A. 

Now we collect some facts about conformal foliations (see [10, I 1,1 4]). 

Let V be a linear connection on the vector bundle T.  We define as usual its curvature and 

torsion, respectively, by 

R(U,  V)Q = ([Vu, Vv] - VtU, v])Q, (48) 

T(U,  V) = VuV± - V v U ±  - [U, V]±, (49) 

where U, V E A:'(M) and Q E F T .  

Define 79P" q as the space of  (p,  q)-double forms on M, i.e., the space of  p-forms on M 

with values on transversal q-forms (which annihilate vectors on D), 

P q 

v .q = A r*M ® A 7-*. (50) 

With R and T we associate two double forms K E 792, 2 and N c 792, 1 defined, respec- 

tively, by 

K(U,  V; Q ,S )  = g(R(U,  V ) Q , S ) ,  (51) 

N(U,  V; Q) = g(T(U,  V), Q) (52) 
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and also the Transversal Torsion N±,  of V by 

N ± ( U ,  V; .) = N ( U ± ,  V±; .) 

VU, V c X ( M ) ,  VQ,  S ~ F T .  

(53) 

Definition 4.2. We say that a linear connection V on the Riemannian vector bundle (T, g) 

is g-Riemannian, if it verifies the following two conditions: 

(i) U . g (Q,  S) -- g ( V u  Q, S) + g (Q,  V u S )  (54) 

and 

(ii) N ±  = 0 i.e., Vu± V± - Vv± U± - [U±,  V±]± = 0 (55) 

VU, V ~ ,Y (M) ,  VQ,  S ~ F T .  (Note that we are only assuming g nondegenerate). 

For example, if G is a covariant metric on M, such that GIT = g, and if ~' is the 

Levi-Civit~ connection of (~, then 

Vu Q = (Vu a ) ±  (56) 

is a g-Riemannian connection on (T, g). So g-Riemannian connections are not unique and 

it is difficult to define a natural conformal curvature tensor for the transversal bundle (T, g). 

However, by a careful analysis based on an early work of Kulkarni, Montesinos succeeds 

in isolating a class of conformally equivalent connections, on which he defines a conformal 
curvature tensor. 

Note. For motivation, recall the classical theory: conformal (Weyl) curvature is a tensor 

field associated to a class of conformally equivalent Riemannian connections and which is 
conformal invariant, 

g ~ ~ = e2 fg ,  

V = Vg ~ V = V$, defined by 

VxY = VxY + ( X f ) Y  + ( Y f ) X  

- g ( X ,  Y)gradg f ,  

K(Riemann tensor) ~ K = e2f(K - ...) 

C = C (Weyl tensor). 

Here the difficulty is in the analog of the second line in the above scheme - what must 

be V = Vg? Montesinos answers the following: let V be any g-Riemannian connection on 
(T, g). Then there exists a unique g-Riemannian connection V, given by 

V u Q  = V u Q  + (Q • £2)U± + (U • £'2)Q - g(U; Q)Z .  (57) 

Its torsion N is 

N = e2O(N - g A (d£2)11). (58) 
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Note. The meaning of  the symbols in the above equations is the following: g is interpreted 

as a (1, 1)-double form defined by g(U; Q) = g(U±, Q); (df2)ll E 791'° is defined by 

(dY2)II(U) = (d~)(Uii) = (d~-~)(U);  g m (df2)j I E "19 2. 1 is defined in the usual way by 

g A (d£2)11 (U , V; .) ---- g(g ,  .)(dS2)ll(V) - g(V; .)(dg2)ll(U) and finally Z = grad±F2 = 
g - I  ( d~  IT, .) E F T -  is the Transversal Gradient of f2 E C°C(M) (see Definition 4.13). 

Def in i t i on  4.3. We call V, given by (57), the Connection Conformally Associated to V, by 

the conformal scaling 

g ~ ~ = e2S2g, f2 E C ~ ( M ) .  (59) 

Based on this class of conformally equivalent connections [ 1 0] proceeds in the construc- 

tion of  a conformal curvature tensor, in the following steps: 

(1) First, he proves that, given a w ~ 79k+l,t+l with b = v - k - / > 1, there exists only 

one 8w ~ 79k, t such that (see [10, Theorem 3.3]) 

c(w - g/x 8w) = O. 

Here c means contraction: for an ~ E 79k+ ~,/+ J we define ca  E 79k' t by 

cot(U1 . . . . .  Uk; Q1 . . . . .  QI) = Z 6a(Ea, UI . . . . .  Uk; Ea, QI . . . . .  Qt), 
a 

where Ea is an orthonormal frame field for F T  and E,, = g(Ea, Ea). 
With this, he defines a Conformal Operator e o n f  : 79k+1. t+l ~ 79k+1.1+1 by 

c o n f w  = w - g Ac~w (60) 

so that c ( c o n f  w )  = 0 .  

(2) In particular, for K E 79 2, 2 given by (51), we define the Conformal Curvature Tensor 

C by 

g(C(U, V)Q, S) = (eonfK)(U,  V; Q, S). (61) 

(3) Making a conformal change in g: g ~ ~ = e2S2g, S2 E C ~ ( M ) ,  we can prove that 

(i) c o n f  = e o n f  

and that 

(ii) c o n f K  = e2S2eonf(K - N/x  dO IT). 

So, denoting by C the conformal curvature given by (61) and constructed with V, given 

by (57), we see that 
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e2S2 (C(U, V)Q, S) --- ~o (C(U, v ) o ,  S) 

= e o n f K ( U ,  V; Q,S)  by(61) 

= ¢onfK(U,  V; Q, S) by (i) above 

= eZS2eonf(K - N/x  d~f217-)(., .; . ,  .) by (ii) above 

= eZS2eonf(., ". , .)  - e 2~ (N A dS217-)(-.; . ,  .) 

and we conclude that C is conformally invariant (C = C) iff 

conf(NAd~217-) = 0 ,  ¥$2 ~ C ~ ( M ) .  (62) 

Now comes the main point, namely, the existence of  a conformally invariant conformal 

curvature for the transversal bundle 7- of  U, an exclusive property of  conformal foliations 

(see [10, Theorem 4.2]). For us, the main interest is in the following theorem. 

Theorem 4.4. Let (M, 79, 7-, g) be a conformal foliation with complementary form ),, and 
assume that codim 79 = n + 1 > 3. Then there exists a unique g-Riemannian connection 

on (7-, g) such that C is conformal invariant. 

Sketch of  proof 
connection. Define a connection V on (7-, g) by the formula 

Vu Q = (fTu Q)± - (~QUII)± -1- 1 )~(U)Q, YU ~ X and Q 6 FT-. (63) 

We can prove the following facts: 

(i) V is g-Riemannian, 
(ii) N = 10~/~ g), 

(iii) KII = 0 where KII (U, V; ..) = K(UII, VII; ..), i.e., V is Flat in longitudinal directions, 
(iv) YX c F79 

V x Q  = ( L x Q ) ~  + 1 Z(X)Q.  (64) 

Now we deduce, by computation, that (ii) implies (62), so that V solves our problem. 

Conversely, (62) implies that the torsion N must be given by (ii), and so V is unique. [] 

Let G be any metric on M such that G[7- = g, and let ~' be its Levi-Civit~ 

Definition 4.5. We say that the conformal foliation (M, 79, 7-, g) is Conformally Flat if, 

for each m c M there exists a neighborhood H of  m and a function f2 ~ C~(bl)  such that 
= 0, where K" is the curvature associated to g = e2S2g (and to the connection given by 

Theorem 4.4). 

Theorem 4.6. I fcodim 79 = n + 1 < 2, then 7- is always conformallyflat. For n + 1 > 4, 

7- is conformally flat iff C = O. 

Note. The case n + 1 = 3 requires a special treatment (see [! 0, Theorem 4.3]). 

Now we introduce some more definitions and computations, which we will use later in 

the quantization program. First note that KII = 0 implies that we can choose an orthonormal 
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longitudinal parallel transversal frame (in short, an OLPT frame) Ea, i.e., g(Ea, Eb) : O, 
fora  -~ b ; g(Ea, Ea) : 6 a ( :  ~1) and Vx Ea = O, VX E FD. 

In the following, Ea always designate such an OLPT frame for F T ,  and V the connection 
given by (63). If X~ is a local frame for FD then (64) gives 

0 = Vx~Ea = (Lc~Ea)± + ½ )~(Xa)Ea 

and, by (26), with ~. = -69 

Lc~Ea ---- ½ CuEa q- og~(Ea)X~. (65) 

Definition 4.7. We define the Ricci Tensor Rie 6 791' l by the formula 

: (cK)(X; Q) : ~-'~6aK(X, Ea; Q, Ea). (66) Ric(X; Q) 
a 

L e m m a  4.8. Ric(X; Q) = i n dO(X, Q). 

Proof We make use of the following identity from [10]: 

cyclsum K(X, Y; Zx, .) = -½ cycisum d69 (X, Y)g(Z±, .) 

to compute K(X, Ea; Q, Ea). We have that 

K (X, Ea; Q, Ea) = - - ½  dO(X, Ea)g(Q, Ea) - ½ 6adO(Q, X). 

Multiplying by 6a and summing over a = 1 . . . . .  n, we get easily the result, using 

Y~a Gag(Q, Ea)Ea = O. [] 

Definition 4.9. For Q ~ FT" we define the Transversal Divergence of Q, as the function 

div± Q = Z ~ag(VE~ Q, Ea). (67) 
a 

L e m m a  4.10. 

Xu • div± U± 

Proof Omiting the 

Xu - div U = 

= Ca divxU± + ½(n - 1)d69(X~, U±). (68) 

symbols ~-~.a and / in U± and div±, we have 

Xc, . Eag(V Ea U, Ea) 

6ag(Vx~ VE a U, Ea) + 6ag(VEa U, VX~ Ea) 

~ag(VEaVXa U -k- VCxa ' Ea]U + R(Xc~, Ea)U, Ea) 

~ag(VEo(l CctU), Ea) + Eag(VI/2C~Eo+oJ~(E~)x U, Ea) 

+Rie(X~;  U),  

where we have used (65) for L~Ea = [Xa, Ea] and the fact that Vx~U = ½C~U (use (64) 
together with (24)). So, computing we obtain 
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Xa • d i v  U = ½ Ea g ( (Ea • Ca ) U + Cc~ VE a U, Ea ) + ½6a g ( Ca WE a U, Ea ) 

+6aO)~ ( Ea)g(Vx# U, Ea) + e-dc( Xu, U) 

= 16adCa(Ea)g(U, Ea) -[- ½EaCag(VEaU, Ea) + ½EaCug(VEaU, Ea) 
# I +eawa(Ea)g(~C#U, Ea) + Ric(Xa; U) 

I dC~(U) + ½C#o~(V) + Ca fliv U + Rie(Xa; U) 

I dO(U, Xa) + C,~ fliv U + Rie(X~; U), 

where we have used the following: 

u . Ca  = U ( O ( X , ~ ) )  

= (LuO)(Xu)  + O([U, Xa]) 

= (iu dO + d ivO)(Xa)  + O ( - C a U  - C~X#) 

= dO(U, X~) - C#C~ (69) 

with C~ = oJ~(U). 
Finally, using Lemma 4.8, we obtain 

X a .  div U = Ca d i v  U + ½ dO(U, Xa) + ½n dO(Xa, U) 

-- Ca d i v  U + ½ (n - 1) dO(Xa, U). [] 

Finally, we want to define a kind of scalar curvature for the connection V, given by (63). 

Definition 4.11. We define the Scalar Curvature of V by 

S = c o c K  = c R i e .  

We need the longitudinal derivative of S, Xa • S. For this, we first recall the Bianchi 
Identity for the connection V on (T, g) (see [13, p.89]) 

cycl(u, v, w) VuR(V ,  W) = cycl(u ' v, w) R([U, V], W). (70) 

Recall that (VuR(V,  W))(Q) = Vu(R(V,  W)Q) - R(V,  W)(Vu Q). Taking the inner 
product with another S ~ FT", and using the properties of V, we easily see that we can 
write Bianchi's Identity in the form 

cycl(u, v, w)( U • K(V,  W; Q, S) - K(V,  W; Q, VuS)  - K(V,  W; Vu Q, S)) 

= cycl(u, v, w) (K([U, V], W; Q, S)). (71) 

Now put U ---- X,~, V = Ec, W ---- Ed, Q = Ea, S = Eb in (71) and compute the 
contractions in the pairs of indices (d, b) and (c, a), respectively, using formula (69) and 
the fact that N_L = 0 (see Definition 4.2(ii)). After a tedious calculation we conclude with 
the following lemma. 
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Lemma 4.12. 

X,~S = CaS - n ( 2 V f  . C~ + C~ div± Vf + C/3o~(Vf)  + AC~), (72) 

where 

W~ = Z6aO2fla(Ea)E a = ~IOC w~(Ec)Ea (73) 
a 

is the transversal vector field metric-equivalent to the 1-form wfl~ , and A C~ is the Transversal 
Laplacian of  C~, defined in the following definition. 

Definition 4.13. For a function 4' ~ C a ( M )  we define its Transversal Laplacian A by 

A4' : div± grad±4' (74) 

where grad±4' : Y~a Ea d4' ( Ea ) Ea = ~ab ( Ea " 4' ) Eb is the Transversal Gradient of 4'. 

We can compute that 

A4' = Z 6ag(VEa grad±4', Ea) (75) 
a 

= rl ab (Ea Eb -- Vea Eb)4'. (76) 

5. Quantization 

When we face the problem of quantizing a gauge system, two different approaches are 
conceivable, in principle. We can reduce the gauge system to the physical system (if possible) 
and quantize or, either, quantize the gauge system directly and then reduce by some Quantum 
Reduction Process. Hopefully, these two processes must be consistent, i.e., schematically 
the following diagram must commute: (see discussion in [8,5]) 

Classical 

Gauge System Reduction , Physical System 

Quant. Quant. 

Quantum 
Quantum Reduction , Quantum 

Gauge System Physical System 

As we have seen in the preceding sections, the reduced physical system (when exists) is 
characterized by a conformal class of physical superhamiltonians, 

h = e W ( g + J u + v ) ,  w E C a ( m )  
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Moreover, the dynamical constraint remains after reduction: h ---- 0. So, the proper way 
of quantizing this relativistic physical system is through a Conformal Klein-Gordon type 
equation. 

Note. Recall that an equation of type Dg~ = 0, for a field qo (where Dg is an operator 

constructed from the metric g), is called ConformaUy Invariant if there exists a number 

k E I~ (called the Conformal Weight of the Equation or of the Field) such that qO is a 
solution of Dg~ = 0 if and only if ~ = ek~2~ is a solution of D $ ~  = 0, where Dg is the 
same operator but now constructed from the metric ~ = e~2g, (see [17]). 

Now we define the Quantum Operators corresponding, respectively to g, Ju and v, by 

= -Z~c = --Ag -- ~Sg, (77) 

Ju = (1/i) (u + 1 divg u), (78) 

P = v (79) 

acting on Coo(m), where Ac =- Ag + ~Sg is the Conformal Laplacian of the metric g 

(here, Ag and Sg are, respectively, the usual Laplacian and scalar curvature of g), and 
= (n - 1)/4n. 

Then it is easy to see that the Conformal Klein-Gordon Equation 

fi '¢ = ~ + J .  + ~)'¢ = 0 (80) 

is conformally invariant with weight k = (n - 1)/4. 

Of course, now we must face the problem of the possibility of construction of an Hilbert 
space from solutions of (80), as well as the interpretation of the theory (one-particle, second 

quantization, etc.) (see [7,2], for which we defer the discussion of these subjects). 
What about Constraint Quantization? Here we adopt KuchaFs philosophy, reinforced by 

the essential unique character of the objects defined in Section 4, namely, the connection 
V, the corresponding scalar curvature S (Definition 4.11) and transversal Laplacian A 
(Definition 4.13). 

So, we quantize the supermomentum constraints Ha by the following operators: 

Ha = ( l / i )  (Xa - kCa) 

and the transversal superhamiltonian H±, by 

(81) 

[ t± = ~ + j~±  + f" (82) 

with 

= - - A  - -  ~ S ,  ( 8 3 )  

Ju± = (I/i) (U± + ½ div±U±), (84) 

f '  = V, (85) 

acting on C °O (M). 
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Then the classical constraints are imposed at quantum level as the Quantum Constraints 

[-la~P ---- 0 = [-I±~,, ~/ ~ C°°(M). (86) 

As we have said, this Quantum Reduction Process must be consistent with the first 
approach to quantization (see discussion in [8,5]). This is implied by the following lemmas 
and theorems. 

T h e o r e m  5.1. 

( l / i )  [[/a,[/¢~] = Ff/~/-/×, 

where Ff~ E C°°(M) are given by (9). 

Proof Compute, using definitions and (37). [] 

L e m m a  5.2. 

( l / i )  [Yu ±,[lu] = CuJu j_ + w~(Ui)R~, 

where Ca : O(Xa) and w~(Ui)  is given by (30). 

Proof Using definition (84) we compute the commutator in the LHS of the above equation, 
and conclude that 

(I/ i)  [jul,Ra]~b = (CaJu. + co~(U±)tIf)~, + (k/i) (U± . C~ + co~(U±)C[~) 

+ 1 (Xa • d i v i U ±  - Ca div± UI)7 ' .  

However, by (69), UL • Ca + CI3w~(U±) : d(-)(Ui, X~), while Lemma 4.10 gives 
Xa - d iv iU± = Ca d i v i U i  + ½(n - 1) d6)(Xa, U±), and so we see that the last sum in 
the RHS is zero. o 

L e m m a  5.3. 

( l / i )  [~,f/a]  = Ca~ + 2(f'~ - ½i w~(V~))fir~, 

where V f  is defined in (73), and, as usual (see [1]) 

f'~ : ( l / i ) ( V f  + 1 d i v i V f )  (87) 

with div i  Vf as in Definition 4.9, Eq. (67). 

Proof First we compute that 

( l / i )  [ g , [ / a ]  = [ A ,  Xa] - k[A,  Ca] + ~[S, Xa] (88) 

and it is easy to see that 

[A, C(~] = 2i gra'~dxCa = 2(gradiCa + ½ AC~) (89) 
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and 

[S, X,~] = - X ~  • S. (90) 

So we must compute [A,  X,~]. For this, we use Eqs. (75), (76) for A4~ and compute that 

[A, Xa]dp --- rlab(EaEbXu -- XaEaEb)qb -k- rlab(XuVEaEb -- VE,,EbXa)q). (91) 

Now we commute the derivatives and use systematically (65), to get 

Xu Ea Ebd p -~- Ea Eb Xaq~ -~- Ca Ea Eb~) -}- I ( E a . Ca ) Eb~b q-- o)~ ( Eb ) Ea X fl ~ 

+ (Ea" w~(Eb))XI3¢) + w~(Ea)EbX#d~ 

+ ½ C#w~(E~)Ebc) + w~(E~)w~(Eb)Xyc) 

and 

(XaVE a Eb -- TEa EbXu)qb : (CuTEa Eb + R(X,~, Ea)E b -F W~(VE a Eb)Xfl)(b. 

Substituting these last two identities in (91), we obtain 

[A, Xa]0 = - C a  A4~ -- (2Vf  + div± Vf + w¢(Vf))X~O 

- ± (grad± Ca + C~ Vf  - 2 rla b R (X~, Ea ) Eb ). 2 

Now we use the fact 

~abR(xu, Ea)Eb = oabZEcK(X~, Ea; Eb, Ec)Ec 
c 

= - Z e c q a b K ( X a ,  Ea; Eb, Ec)Ec 
c 

' ~..cEc(Ec Ca + C,w~(Ec))Ec =~n 

' v~), : ~ n (grad±Ca q- C~ 

where we have used (69), Lemma 4. I0 and (73). 
By [13, p. 151], we have 

div. Vf = div.,o~ = ,°b(Veo,o~)(Eb) = ~a~(Ea. ~o~(eb) -- ,o~(VEo Eb)) 

and so, substituting and calculating, We have 

[zx, x~]o = -c~a¢ - c~s¢ + 2 ( ~  - ~io~(v~))~¢ 

- k ( 2 V f  . C~ + C~ div± Vf + C~w~(Vf))@ 

+2k grad±C~@ + C,~Sdp. 

By (89)-(91), we have 

(I/i) [~,f-/,~]q~ = C(~b + 2(¢g - ½i w~(Vf))I-/t~ @ 

----- - k ( 2 V f  . C~ + C~ div± Vf + C~w~(VJ))O 

+ c ~ s ¢ ~  - k A C ~  - ~ ( x ~  • S)¢~ 
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and so, it suffices to prove that 

~Xo, . S = ~C,~S - k ( Z V ~  . Ct~ + C e div± V~ + Ct~w~(V ~ )  + ACe,) 

which is precisely Lemma 4.12. 

399 

[3 

Now, collecting the above two lemmas, together with (13), we finally have the following 

theorem. 

Theorem 5.4. 

(l/i) I/t±, H~I = c~H± + c~/t~, 

where C~ = 2f'ff - i w ~ ( V ~ )  + w ~ ( U ± ) .  

So, Theorems 5.1 and 5.4 show that we have a closed commutator algebra of quantum 

operator constraints, with the structure functions appearing on the left of  that quantum 

operators. This implies the consistency of the above quantization process. Moreover, we 

recover the physical theory described by the Conformal  Kle in -Gordon  Equation (80). In 

fact, start with a wave function ~ 6 C ~ ( M )  that solves the quantum constraints (86). 

Assume also that the foliation f is simple, and that O is d f  - e x a c t ,  i.e., 3~2 E C ~ ( M )  

such that O = -d j :52 .  Then we easily prove that the rescaled wave function ~ = e k~ 

is a basic function and so, descends to a wave function ~p ~ C ~ ( m ) .  Now, as in [6], we 

can prove that the transversal superhamiltonian [ I±  has conformal weight 1, when acting 

on wave functions of  conformal weight k, i.e., 

t - /±~ = e{k+l)s~//±qJ, (92) 

where t/, = ekS~qJ, and H ±  is the transversal superhamiltonian constructed from the 

rescaled metric ~ = eS~g. So we see that (86) =~/¢-/± qJ = 0 :=~ H ± ~  = 0, and, since ~ is 

basic, this equation implies that 

Ct = O, (93) 

where ~0 is the induced wave function on m. In this way, we recover the physical conformal 

Klein-Gordon equation (80). 

Appendix A 

Hereafter we adopt the following notations, related to decompositions (21)-(24): 

QA are local coordinates on M. 
0 A -~- O/OQA,andO A = d Q  A, A = 0 . . . . .  N .  

Xc~ = XAOA, a local frame field for F 7 9 , ~  = 1 . . . . .  v. 

Qa = QA OA, a local frame field for F T ,  a = 0 . . . . .  n. 

(0 4, oa), a dual coframe for D (9 7". so that 0 4 E I 'D* ,  0 a c FT"* ~- F D  ° (we may 

assume that 0 a are closed l-forms), 0 ~ (Xt~) = 3~, 0" (Qb) = 3~,, 0 4 (Qa) = 0 = O" ( X , ) .  
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G = GABOA ® 08, a contravariant metric on M. 

= GI(D ° ~ 7-*). 

The projector P± : T M  ~ 7" can be written in the form 

,,-kB r~a 0 0 A ~BOB ® 0 A P± = Qa®Oa( ")= ~ga~A B® = 

and the transversal metric G± is 

G± = P± ® P±(G) = Qa ® oa ® Qb ® ob(GABOA ® OB) 

= G A B ~ C n a  E b GABpCTpEo ~,~a ~ a  Qb QB oc ® OE = A B C ® OE. 

From 

gab = G(Oa, Ob) = GABoA ® OB(Q~ Oc, Q b OD) = GAB Q A b 

we can also write 

-ab .~C Q~Oc ® OE. (94) G± = g ~da 

Now it is easy to see that 

LaO a E 790 ~- •*, Va,a.  (95) 

We compute now La P± = L~ ( Qa ® 0 a) : first we decompose L~ Qa = tba Qo + l~aa X ~. 

However, we have 

0 = L,r(O b, Qa) = (La Oh, Qa) + (O°,LaQa) 

and by (94), we can put LaO b = rbdO d and deduce, from the last equation, that tba = --rbaa , 

So, reuniting these information, we easily compute that 

La P± = l~a X# ® 0 a , (96) 

where l~a = O~(La Qa). 
Now we compute LaU±, with U± = P±(U) and U ~ ?((M). By (28) 

LaU± = La(P± • U) 

= (Lc~P±) * U + P± * (LuU) 

= (l~aXg ® Oa)(u a Qa + ut~X~) + P±(Ca + long. vector) by (12) 

= lflaauaX~ + CuU±, 

and recalling the definition of  the 1-form co~ in (29), it is easy to see that ~o~ = IBaa Oa and 

so we can write La U± also in the form (30). 
Now we compute LAG±. Again by (28), we have, with 79± = P± ® P± 

LaG± = La(79± • G) 

= 79± • (LAG) + (La79±) • G 
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= 7 ' ±  * (CaG + t e r m s i n l )  + La(P± ® P±) • G 

= C a G ±  + (LAP± ® P± + P± ® LAP±) • G 

= CaG± + lfluaXfl ® 0 a ® Qb ® 0 b + Qb ® 0 b 

®lflaXl 3 a ~cd ® 0  (g Q c ® Q d )  

: CaG± + l~ag, abxfl ® Qb + l~ag ba Qb ® Xfl, 

where we have used (11) and the fact that 0 a • D °. Now, let V~ = G(w~, .) e F T  the 

transversal vector field, metric-equivalent to the transversal 1-form w~, given by (29). We 

compute that V~ = l~a ~ab Qb, and so we see that we can write La G± in the form (31). 

As in Section 3, we assume that ~ = G ID ° = G± 179 o is nondegenerate, and let g be the 

corresponding transversal covariant metric on T .  We want to compute Lug. For this, we 

first note that Lag must be a covariant transversal vector field, since g = gab Oa ® 0 b and 

LaO a • 790. So, we compute (La~)]7-,  since it suffices to compute Lag. We have 

(La~,)(O a , 0 b) = (LaG ±)(O a , 0 b ) 

= (CaG± + V~ v X~)(oa ,o  b) 

: CaG±(O a,O b) since 0 a • 790 

= Ca~,(O a,O b) by (94) 

and so, defining Lag as 

(Lag)(Qa,  Qb) = gacgba(Lag,)(O a, 0 b) (97) 

we conclude that Lag = - C a g .  Notice that if G is a covariant metric on M, such that 

G(D, 7-) = 0, then definition (97) of  Lag is equivalent to 

(Lag)(Qa,  Qb) = (LaG)(Qa ,  Qb). (98) 
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