

Journal of Geometry and Physics 18 (1996) 38 1-402

Conformal foliations and constraint quantization

J.N. Tavares¹

Dept. Matemdtica Pura, Faculdade de Ciencias, U. Porto, 4000 Porto, Portugal

Received 24 September 1994

Abstract

We show that the **Classical Constraint Algebra** of a **Parametrized Relativistic Gauge System** induces a natural structure of **Conformal Foliation on** a **Transversal Gauge**. Using the theory of conformal foliations, we provide a natural **Factor Ordering** for the quantum operators associated to the canonical quantization of such gauge system.

Keywords: Parametrized relativistic gauge system; Conformal foliations; Canonical quantization 1991 *MSC:* 58F06, 81S10,81T70, 81T13

1. Introduction

The purpose of this paper is to show that the theory of *Conformal Foliations*, as developed a few years ago by Montesinos, Vaisman, and others, helps the understanding of *Constraint (Dirac) Quantization* of *Parametrized Relativistic Gauge Systems* by providing a natural solution for the so-called *Factor Ordering Problem* in the *Quantum Operators* corresponding to the *Classical Constraints* $H_{\alpha} = 0 = H$ (see discussion in [8,5]).

We follow Hájicẽk/Kuchař's philosophy, developed in a series of papers (see [5-8]), but here we adopt modem differential geometric methods (in the spirit of [12] or [13]) to construct the natural quantum operators and deduce the corresponding **Commutator Algebra**. We hope that the use of the theory of conformal foliations helps to clarify the essential unique geometric character of Hájicẽk/Kuchař's quantization method, as well as the naturality in the choice of the quantum operators.

The paper is organized as follows. In Section 2, we redefine the model, introduced in [5], of *Parametrized Relativistic Gauge System* (where it will be called only a Gauge **System**).

¹E-mail: jntavar@fc 1 .fc.up.pt.

using symplectic geometry (see [1], [3] or [4]). Section 3 discusses the *Transversal Geometry* of the *Gauge Foliation* \mathcal{F} , in terms of the choice of a transversal distribution \mathcal{T} , and shows that the mathematical structure deduced from the classical *Constraint Algebra* (9), (10), is that of a conformal foliation with *Complementary Form* $\lambda = -\Omega$ (see Definition 4.1). Section 4 reviews the geometry of conformal foliations following closely [10,14]. We introduce a *Conformal Curvature Tensor* C (see (61)) and the unique g-Riemannian connection ∇ on (\mathcal{T} , g) such that C is conformally invariant (see Theorem 4.4). In particular, this seems to be the connection introduced in [6] using a substantial different formalism. Then, we define a *Scalar Curvature* S (see Definition 4.11), a *Transversal Laplacian* (see Definition 4.13), constructed from the above-mentioned connection, and deduce some useful identities (see Lemmas 4.8, 4.10 and 4.12). Finally, in Section 5, we implement the *Constraint (Dirac) Quantization Program*, defining the quantum operators and computing the *Quantum Commutator Algebra* (see Theorems 5.1 and 5.4). The more relevant formulas are deduced in Appendix A.

2. Symplectic geometry of gauge systems

The situation we have in mind is the following. Let M be an (N + 1)-dimensional smooth manifold, T^*M its cotangent bundle, together with its canonical symplectic form $\omega = d\theta$, and $(C^{\infty}(T^*M), \{,\})$ the Poisson algebra of C^{∞} -functions on T^*M .

Assume that we have a v-dim integrable distribution \mathcal{D} (a subbundle of TM) and let \mathcal{F} be the corresponding foliation on M. The leaves of \mathcal{F} describe *Gauge Equivalent* or physically indistinguishable configurations on M. We call the pair (M, \mathcal{F}) a *Gauge System*. When \mathcal{F} is simple, then $m = M/\mathcal{F}$ is called the physical space and T^*m the physical phase space of the gauge system.

We consider now a special subalgebra of $(C^{\infty}(T^*M), \{,\})$, consisting of functions, *at most Linear in Momenta*, linearly generated by the following two types of functions.

- (i) Configuration Functions functions $F \in C^{\infty}(M)$, identified with their pullbacks to T^*M .
- (ii) *Momentum Functions* to each vector field $X \in \mathcal{X}(M)$ we associate the corresponding *Momentum Function* J_X defined by

$$J_X(\alpha_Q) = \alpha_Q(X_Q), \quad \forall \alpha_Q \in T^*M.$$
⁽¹⁾

The following Poisson brackets characterize the kinematics of the system.

Proposition 2.1 ([1]).

- (i) $\{F_1, F_2\} = 0$, (ii) $\{F, J_X\} = X \cdot F$,
- (ii) $\{J_X, J_Y\} = -J_{[X, Y]},$

 $\forall F_1, F_2 \in C^{\infty}(M), \quad \forall X, Y \in \mathcal{X}(M).$

In particular, we consider momentum functions of the form J_X with $X \in \Gamma \mathcal{D}$ (i.e., X is a vector field on M, tangent to \mathcal{F}) which we call *Constraint Functions*. They form a subalgebra of $(C^{\infty}(T^*M), \{,\})$ called the (linear) *Gauge Algebra* \mathcal{G} of the system. Using this, we define now the *Constraint Set* $\mathcal{C} \subset T^*M$ by

$$\mathcal{C} = \{ \alpha_Q \in T^* M \colon J_X(\alpha_Q) = 0, \forall X \in \Gamma \mathcal{D} \}.$$
⁽²⁾

Note that C is the subbundle \mathcal{D}^0 of T^*M , consisting of the covectors that vanish on \mathcal{D} and, therefore, that C is a coisotropic submanifold in T^*M (a first class constraint set, in Dirac's terminology). When we consider the closed 2-form $i^*\omega$ (where $i : C \to T^*M$ is inclusion), we see that it is degenerate and its characteristic distribution $\mathcal{K} = \ker(i^*\omega)$ is integrable and locally generated by the Hamiltonian vector fields associated to the constraint functions. The quotient (if it exists) of C by the characteristic foliation determined by $\mathcal{K}, S = C/\mathcal{K}$ has a unique symplectic form ω_S such that $\pi^*\omega_S = i^*\omega$ (see [1], [3] or [4]):

$$\begin{array}{ccc} \mathcal{C} \xrightarrow{i} T^*M \\ \downarrow^{\pi} \\ = \mathcal{C}/\mathcal{K} \end{array}$$

 \mathcal{S}

Also if $F_1, F_2 \in C^{\infty}(T^*M)$ are two functions constant on the leaves of the characteristic foliation, i.e., such that $i^*F_k = \pi^*f_k$ (k = 1, 2), for uniquely determined functions $f_1, f_2 \in C^{\infty}(S)$, then

$$i^*\{F_1, F_2\} = \pi^*\{f_1, f_2\}_{\mathcal{S}}.$$
(3)

Under certain regularity assumptions, we know that (S, ω_S) is symplectomorphic to $(T^*m, \omega_m = d\theta_m)$ and so, it is the natural candidate for the physical (or reduced) phase space of the physical system (see [3]).

Now we assume that the intrinsic dynamics of our gauge system is generated by a quadratic function in momenta of the form

$$H = \frac{1}{2}G + J_U + V,$$
 (4)

where G is a contravariant metric (eventually degenerate) on M, viewed as a function on T^*M , $U \in \mathcal{X}(M)$ is a vector field in M and $V \in \mathcal{C}^{\infty}(M)$. We have the following Poisson brackets, involving the new kind of homogeneous quadratic function G.

Proposition 2.2 ([1]).

(i) $\{G, F\} = -2J_{\text{grad}_G F}$, where $\text{grad}_G F$ is the vector field $G(dF, .) \in \mathcal{X}(M)$, (ii) $\{G, J_X\} = L_X G$, the Lie derivative of G in the direction of $X \in \mathcal{X}(M)$,

$$\forall F \in C^{\infty}(M), \quad \forall X \in \mathcal{X}(M).$$

Now we consider the equations of motion, which follow from the canonical action principle, for a parametrized gauge system:

$$S(Q^{A}, P_{A}; N, N^{\alpha}) = \int dt (P_{A} \dot{Q}^{A} - N \cdot H - N^{\alpha} \cdot H_{\alpha}) \longrightarrow \text{ stat.},$$
(5)

where (Q^A, P_A) are the local canonical coordinates in T^*M ; N, N^{α} Lagrange multipliers and $H_{\alpha} = J_{X_{\alpha}}$ are the momentum functions associated to a local basis X_{α} ($\alpha = 1, ..., v$) of the *Gauge Distribution* \mathcal{D} on M.

Following the physical terminology, we call the H_{α} the Supermomentum Functions and H the Superhamiltonian of the (parametrized) gauge system (see [5] for discussion and examples).

Variation with respect to Q^A and P_A yields the Hamiltonian equations; while variation with respect to the Lapse Function N and the Shift Vector Field N^{α} , leads to the constraints

$$H = 0 = H_{\alpha}.\tag{6}$$

So, we recover the *Kinematical Constraint Set C*, defined in (2), together with a new *Dynamical Constraint H* = 0, that reveals the fact that the system is invariant under external *time* reparametrizations.

Assume that $C_0 = H^{-1}(0)$ is a submanifold of T^*M . Since codim $C_0 = 1$, C_0 is coisotropic and is foliated by the trajectories of X_H (the Hamiltonian vector field associated to H) that represent the evolution of the system. For consistency, we assume that the full set of constraints (6) is preserved by the dynamics, which means that $C_0 \cap C$ is coisotropic, i.e., we have

$$\{H, H_{\alpha}\} = C_{\alpha}H + C_{\alpha}^{\beta}H_{\beta}, \tag{7}$$

where $H_{\alpha} = J_{X_{\alpha}}$ are the supermomenta associated to a local basis X_{α} of \mathcal{D} , $C_{\alpha} \in C^{\infty}(M)$ and $C_{\alpha}^{\beta} \in C^{\infty}(T^*(M))$ is at most linear in momenta. If the local basis X_{α} for \mathcal{D} verifies

$$[X_{\alpha}, X_{\beta}] = -\Gamma^{\gamma}_{\alpha\beta} X_{\gamma} \tag{8}$$

with $\Gamma_{\alpha\beta}^{\gamma} \in C^{\infty}(M)$, then the Algebra of Constraints $H = 0 = H_{\alpha}$ has the following (open) structure:

$$\{H_{\alpha}, H_{\beta}\} = \Gamma^{\gamma}_{\alpha\beta} H_{\gamma}, \tag{9}$$

$$\{H, H_{\alpha}\} = C_{\alpha}H + C_{\alpha}^{\beta}H_{\beta}, \tag{10}$$

H is given by (4) and, working equality (10), using Propositions 2.1 and 2.2, we conclude the following identities for the Lie derivatives in *Gauge Directions*:

$$L_{\alpha}G = C_{\alpha}G(\text{mod }I); \tag{11}$$

$$L_{\alpha}U = C_{\alpha}U(\text{mod }I); \tag{12}$$

$$L_{\alpha}V = C_{\alpha}V,\tag{13}$$

where I is the ideal of the contravariant tensor algebra $\bigotimes TM$, generated by ΓD and L_{α} is Lie derivative in the direction of $X_{\alpha} \in \Gamma D$. So, this Lie derivative rescales the fields by a common factor and adds certain elements from I.

All the conclusions about the physical content of the gauge system described by the above model, must be deduced only from intrinsic data, namely, from the *Kinematical Constraint*

C, determined by the foliation \mathcal{F} , and the *Dynamical Constraint* C_0 , given by H = 0. So, they must be invariant under transformations that preserve these data. We impose also that these transformations preserve the polynomial character (in momenta) of the constraints (this will be needed for the quantization program, as we shall see later, and is related to Van Hove's theorem (see [1, Section 5.4])). So, they must be a combination of the following three types of transformations:

(a) Change in the local basis for \mathcal{D} :

$$X_{\alpha} \to \overline{X}_{\alpha} = \Lambda^{\beta}_{\alpha} X_{\beta}, \tag{14}$$

where $\Lambda_{\alpha}^{\beta} \in C^{\infty}(M)$, det $\Lambda_{\alpha}^{\beta} \neq 0$, with the corresponding change in supermomenta,

$$H_{\alpha} \to \overline{H}_{\alpha} = \Lambda_{\alpha}^{\beta} H_{\beta}. \tag{15}$$

(b) Gauging the superhamiltonian:

$$H \to \overline{H} = H + \Lambda^{\alpha} H_{\alpha} \tag{16}$$

with $\Lambda^{\alpha} \in C^{\infty}(T^*(M))$, at most linear in momenta.

(c) Scaling the superhamiltonian:

$$H \to \overline{H} = \mathrm{e}^{\Omega} H \tag{17}$$

and $e^{\Omega} \in C^{\infty}(M)$. To preserve the signature of the metric we only allow positive scalings.

Note that the above transformations do not leave invariant the superhamiltonian H, given by (4). In fact, after an easy computation, we deduce that, if

$$H \to \overline{H} = \frac{1}{2}\overline{G} + J_{\bar{U}} + \overline{V}$$

then

$$G = e^{\Omega}(Q)G \pmod{I},\tag{18}$$

$$\overline{U} = e^{\Omega}(Q)U \pmod{I}, \tag{19}$$

$$\overline{F} = \mathrm{e}^{\Omega}(Q)V. \tag{20}$$

Let us say that two superhamiltonians $H = \frac{1}{2}G + J_U + V$ and $\overline{H} = \frac{1}{2}\overline{G} + J_{\tilde{U}} + \overline{V}$, are *Conformally Equivalent* (mod I), if they are related through (18)–(20).

Then we conclude that the above transformations (a)–(c), leave invariant the conformally equivalence class (mod I) of the superhamiltonian.

3. Transversal geometry of \mathcal{F}

The transversal geometry of \mathcal{F} is infinitesimally modeled by the normal bundle TM/\mathcal{D} . We make a choice of a transversal subbundle \mathcal{T} to \mathcal{D} ,

$$T_Q M = \mathcal{D}_Q \oplus \mathcal{T}_Q \tag{21}$$

which identifies $TM/D \cong T$. Vectors on D are called *Longitudinal* and vectors on T are called *Transversal*. Associated to (21), we have two projectors

$$\mathrm{Id} = P_{\parallel} \oplus P_{\perp},\tag{22}$$

a decomposition

$$T_Q^* M = \mathcal{D}_Q^* \oplus \mathcal{T}_Q^* \tag{23}$$

with $\mathcal{T}_{O}^{*} \cong \mathcal{D}_{O}^{0}$, and the two corresponding projectors

$$\mathrm{Id}^* = P_{\parallel}^* \oplus P_{\perp}^*. \tag{24}$$

We can form various tensor products of these projectors, using them to project the various tensors into longitudinal and transversal parts. In particular, the choice of the *Transversal Gauge* T allows us to define the *Transversal Superhamiltonian* H_{\perp} by

$$H_{\perp} = \frac{1}{2}G_{\perp} + J_{U_{\perp}} + V, \tag{25}$$

where

$$G_{\perp} = (P_{\perp} \otimes P_{\perp})(G) \tag{26}$$

and

$$U_{\perp} = P_{\perp} U \tag{27}$$

are the Transversal Contravariant Metric and the Transversal Vector Potential, respectively (associated to G and T).

So, the transversal gauge T fixes a representative of the equivalence class of superhamiltonians, connected by the *Gauging* (b), since the difference between two transversal projections of the same vector belongs to D.

Let us compute the constraint algebra in the transversal gauge \mathcal{T} . For this, we compute first $L_{\alpha}G_{\perp}$ and $L_{\alpha}U_{\perp}$, using the fact that L_{α} is a tensor derivation that commutes with contractions,

$$L_{\alpha}(\mathcal{C}(\mathcal{P}_{\perp} \otimes t)) = \mathcal{C}(L_{\alpha}\mathcal{P}_{\perp} \otimes t) + \mathcal{C}(\mathcal{P}_{\perp} \otimes L_{\alpha}t),$$
(28)

where C is a contraction, \mathcal{P}_{\perp} a transversal projector (a tensor product of some P_{\perp} and P_{\perp}^*) and t some tensor field on M.

Define for each $\alpha, \beta \in \{1, ..., v\}$ a transversal 1-form (i.e., a form which annihilates longitudinal vectors) ω_{α}^{β} by

$$\omega_{\alpha}^{\beta} = (L_{\alpha} P_{\perp}^{*})(\theta^{\beta}), \tag{29}$$

where $\theta^{\beta} \in \Gamma \mathcal{D}^*$ is the dual basis to $X_{\beta} \in \Gamma \mathcal{D}$. A computation, using local frame fields for \mathcal{D}, \mathcal{T} , their duals and also formula (28) (see Appendix A), shows that

$$L_{\alpha}U_{\perp} = C_{\alpha}U_{\perp} + \omega_{\alpha}^{\beta}(U_{\perp})X_{\beta} = C_{\alpha}U_{\perp} \pmod{I}, \tag{30}$$

387

$$L_{\alpha}G_{\perp} = C_{\alpha}G_{\perp} + V_{\alpha}^{\beta} \vee X_{\beta} = C_{\alpha}G_{\perp} \pmod{I},$$
(31)

where $V_{\alpha}^{\beta} = G(\omega_{\alpha}^{\beta}, .)$ is the transversal vector field *metric-equivalent* to ω_{α}^{β} , and \vee denotes symmetric tensor product.

Finally, using (30) and (31) together with Propositions 2.1 and 2.2, we deduce that

$$\{H_{\perp}, H_{\alpha}\} = C_{\alpha}H_{\perp} + F_{\alpha}^{\beta}H_{\beta}, \qquad (32)$$

where $F_{\alpha}^{\beta} \in C^{\infty}(T^*M)$ is given by

$$F^{\beta}_{\alpha} = J_{V^{\beta}_{\alpha}} - \omega^{\beta}_{\alpha}(U_{\perp}).$$
⁽³³⁾

Now we arrive at a crucial point – the definition of a 1-form Θ , on M, attached to the geometry of the gauge system as specified by the constraint algebra (9) and (10). So, consider the longitudinal 1-form

$$\Theta = C_{\alpha} \theta^{\alpha}, \tag{34}$$

where $\theta^{\alpha} \in \Gamma \mathcal{D}^*$ are dual 1-forms to the X_{α} . It is easy to see that Θ is a globally welldefined longitudinal 1-form on M. We want to compute its *Foliated Derivative* $d_{\mathcal{F}}\Theta$ (i.e., the derivative along longitudinal directions, see [16]). For this, we first note that Jacobi Identity

$$\operatorname{cyclsum}\{H, \{H_{\alpha}, H_{\beta}\}\} = 0 \tag{35}$$

implies the following identity:

$$\{C_{\alpha}, H_{\beta}\} - \{C_{\beta}, H_{\alpha}\} = \Gamma^{\gamma}_{\alpha\beta} C_{\gamma}.$$
(36)

So, recalling that $C_{\alpha}, \Gamma_{\alpha\beta}^{\gamma} \in C^{\infty}(M)$, we deduce that

$$L_{\beta}C_{\alpha} - L_{\alpha}C_{\beta} = \Gamma^{\gamma}_{\alpha\beta}C_{\gamma} \tag{37}$$

and finally

$$d_{\mathcal{F}}\Theta(X_{\alpha}, X_{\beta}) = d\Theta(X_{\alpha}, X_{\beta})$$

= $X_{\alpha} \cdot \Theta(X_{\beta}) - X_{\beta} \cdot \Theta(X_{\alpha}) - \Theta([X_{\alpha}, X_{\beta}])$
= $L_{\alpha}C_{\beta} - L_{\beta}C_{\alpha} - \Theta(-\Gamma_{\alpha\beta}^{\gamma}X_{\gamma})$
= $L_{\alpha}C_{\beta} - L_{\beta}C_{\alpha} + \Gamma_{\alpha\beta}^{\gamma}C_{\gamma}$
= 0.

i.e., Θ is d_F-closed. Recall that a kind of *Poincaré Lemma* (see [15]) applies to this case – locally, there exists a function Ω such that $\Theta = d_F \Omega$, i.e.,

$$\Theta(X) = L_X \Omega, \quad \forall X \in \Gamma \mathcal{D}.$$
(38)

In particular, for $X = X_{\alpha}$, we have

$$C_{\alpha} = L_{\alpha} \Omega. \tag{39}$$

Consider now the Transversal Contravariant Metric $\tilde{g} = G|_{\mathcal{D}^0} = G_{\perp}|_{\mathcal{D}^0}$ (see Appendix A), that we assume to be nondegenerate. Let g be the associated transversal covariant metric on $\mathcal{T} \cong \mathcal{T}^{**} \cong \mathcal{D}^{0^*}$. A computation made in Appendix A (see also the note following Definition 4.1), shows that

$$L_{\alpha}g = -\Theta(X_{\alpha})g. \tag{40}$$

Find a function Ω that locally verifies (39) and define the rescaled metric \bar{g} by

$$\bar{g} = e^{\Omega}g \tag{41}$$

Then we have

$$L_{\alpha}\bar{g} = L_{\alpha}(e^{\Omega}g) = (L_{\alpha}\Omega)\bar{g} + e^{\Omega}L_{\alpha}g = C_{\alpha}\bar{g} - C_{\alpha}\bar{g} = 0$$

and we see that the rescaled metric is foliated (i.e., constant along the leaves of \mathcal{F}), or, put another way, g is locally conformal to a foliated metric.

According to Montesinos (see [10,11] and Section 4) we say that \mathcal{F} is a *Conformal Foliation* and that

$$\lambda = -\Theta \tag{42}$$

is the corresponding Complementary Form.

One more point, before closing this section.

Recall that a choice of a transversal subbundle \mathcal{T} , fixes a representative H_{\perp} in the equivalence class of superhamiltonians connected by the *Gauging Transformations* (b). However, we are still free to *rescale* the superhamiltonian according to (c). When we do this, and compute the new structure functions in (10), we see that

$$C_{\alpha} \to \overline{C_{\alpha}} = C_{\alpha} + L_{\alpha}\Omega \tag{43}$$

and

$$C^{\beta}_{\alpha} \to \overline{C^{\beta}_{\alpha}} = \mathrm{e}^{\Omega} C^{\beta}_{\alpha}. \tag{44}$$

Hence we conclude two things: first, the $d_{\mathcal{F}}$ -cohomology class [λ] remains unchanged. In fact

$$\overline{\Theta} - \Theta = (\overline{C_{\alpha}} - C_{\alpha})\theta^{\alpha} = (L_{\alpha}\Omega)\theta^{\alpha} = \mathrm{d}_{\mathcal{F}}\Omega.$$

Secondly, as $\lambda = -\Theta$ is $d_{\mathcal{F}}$ -closed, locally we can choose a function Ω such that $d_{\mathcal{F}}\Omega = \lambda$, which implies in particular that $d_{\mathcal{F}}\Omega(X_{\alpha}) = L_{\alpha}\Omega = \lambda(X_{\alpha}) = -C_{\alpha}$, and so, by (43), $\overline{C_{\alpha}} = 0$, for the corresponding rescaled superhamiltonian $\overline{H} = e^{\Omega}H$.

If we can find globally such a Ω , i.e., if λ is d_F-exact, then

$$L_{\alpha}\bar{G} = 0 = L_{\alpha}\overline{U} = 0 = L_{\alpha}\overline{V} \pmod{I}$$
(45)

and so the fields \overline{G} , \overline{U} , \overline{V} are projectable in the (leaf) physical space (when it exists). However, note that Ω is defined up to a function ω such that $d_{\mathcal{F}}\omega = 0$, i.e., up to a *basic function* (constant on the leaves of the foliation \mathcal{F}).

So, when the foliation is simple, we will have a physical superhamiltonian h, defined up to a multiplication by a function e^w , with $w \in C^{\infty}(M)$ a basic function. In other words, the gauge system only determines the conformal geometry in the physical configuration space. Moreover, in this case, if $\pi : M \to m = M/\mathcal{F}$, denotes the canonical projection, then, as $\pi_* = d\pi$ annihilates I, we obtain a class of conformally contravariant tensors on m, $(e^w \cdot g, e^w \cdot P_u, e^w \cdot v)$, $w \in C^{\infty}(m)$ and also a class of conformally physical superhamiltonians

$$\{h\} = \{e^{w}(g + P_{u} + v) \colon w \in C^{\infty}(m)\}.$$
(46)

4. Geometry of conformal foliations

In the last section, we have seen that the gauge system determines the structure of conformal foliation on \mathcal{F} . To be more specific, we adopt the following definition from [10,11].

Definition 4.1. Let M be a manifold, \mathcal{D} an integrable distribution, \mathcal{T} a transversal subbundle to \mathcal{D} and g a covariant metric on \mathcal{T} . We say that $(M, \mathcal{D}, \mathcal{T}, g)$ is a *Conformal Foliation*, if there exists a longitudinal 1-form λ such that

$$L_X g = \lambda(X)g, \quad \forall X \in \Gamma \mathcal{D},$$
(47)

 λ is called the *Complementary Form* of \mathcal{F} .

Note. In Eq. (47), $L_X g$, $X \in \Gamma D$, is defined as in Eqs. (97), (98) of Appendix A.

Now we collect some facts about conformal foliations (see [10,11,14]).

Let ∇ be a linear connection on the vector bundle \mathcal{T} . We define as usual its curvature and torsion, respectively, by

$$\boldsymbol{R}(U,V)\boldsymbol{Q} = ([\nabla_U,\nabla_V] - \nabla_{[U,V]})\boldsymbol{Q}, \tag{48}$$

$$\boldsymbol{T}(U,V) \doteq \nabla_U V_\perp - \nabla_V U_\perp - [U,V]_\perp, \tag{49}$$

where $U, V \in \mathcal{X}(M)$ and $Q \in \Gamma \mathcal{T}$.

Define $\mathcal{D}^{p,q}$ as the space of (p,q)-double forms on M, i.e., the space of p-forms on M with values on transversal q-forms (which annihilate vectors on \mathcal{D}),

$$\mathcal{D}^{p,q} = \bigwedge^{p} T^* M \otimes \bigwedge^{q} T^*.$$
⁽⁵⁰⁾

With R and T we associate two double forms $K \in \mathcal{D}^{2,2}$ and $N \in \mathcal{D}^{2,1}$ defined, respectively, by

$$\boldsymbol{K}(U,V;\boldsymbol{Q},\boldsymbol{S}) = \boldsymbol{g}(\boldsymbol{R}(U,V)\boldsymbol{Q},\boldsymbol{S}), \tag{51}$$

$$N(U,V;Q) = g(T(U,V),Q)$$
⁽⁵²⁾

and also the *Transversal Torsion* N_{\perp} , of ∇ by

$$N_{\perp}(U, V; .) = N(U_{\perp}, V_{\perp}; .)$$
 (53)

 $\forall U, V \in \mathcal{X}(M), \forall Q, S \in \Gamma \mathcal{T}.$

Definition 4.2. We say that a linear connection ∇ on the Riemannian vector bundle (T, g) is g-Riemannian, if it verifies the following two conditions:

(i)
$$U \cdot g(Q, S) = g(\nabla_U Q, S) + g(Q, \nabla_U S)$$
 (54)

and

(ii)
$$N_{\perp} = 0$$
 i.e., $\nabla_{U_{\perp}} V_{\perp} - \nabla_{V_{\perp}} U_{\perp} - [U_{\perp}, V_{\perp}]_{\perp} = 0$ (55)

 $\forall U, V \in \mathcal{X}(M), \forall Q, S \in \Gamma \mathcal{T}$. (Note that we are only assuming g nondegenerate).

For example, if \tilde{G} is a covariant metric on M, such that $\tilde{G}|\mathcal{T} = g$, and if $\tilde{\nabla}$ is the Levi-Cività connection of \tilde{G} , then

$$\nabla_U Q = (\nabla_U Q)_\perp \tag{56}$$

is a g-Riemannian connection on (\mathcal{T}, g) . So g-Riemannian connections are not unique and it is difficult to define a natural conformal curvature tensor for the transversal bundle (\mathcal{T}, g) .

However, by a careful analysis based on an early work of Kulkarni, Montesinos succeeds in isolating a class of conformally equivalent connections, on which he defines a conformal curvature tensor.

Note. For motivation, recall the classical theory: conformal (Weyl) curvature is a tensor field associated to a class of conformally equivalent Riemannian connections and which is conformal invariant,

$$g \longrightarrow \tilde{g} = e^{2f}g,$$

$$\nabla = \nabla_g \longrightarrow \overline{\nabla} = \nabla_{\tilde{g}}, \text{ defined by}$$

$$\overline{\nabla}_X Y = \nabla_X Y + (Xf)Y + (Yf)X$$

$$-g(X, Y)\text{grad}_g f,$$

$$K(\text{Riemann tensor}) \longrightarrow \overline{K} = e^{2f}(K - ...)$$

$$C = \overline{C} \text{ (Weyl tensor).}$$

Here the difficulty is in the analog of the second line in the above scheme – what must be $\overline{\nabla} = \nabla \overline{g}$? Montesinos answers the following: let ∇ be any g-Riemannian connection on (\mathcal{T}, g) . Then there exists a unique \overline{g} -Riemannian connection $\overline{\nabla}$, given by

$$\nabla_U Q = \nabla_U Q + (Q \cdot \Omega) U_{\perp} + (U \cdot \Omega) Q - g(U; Q) Z.$$
(57)

Its torsion \overline{N} is

$$\overline{N} = e^{2\Omega} (N - g \wedge (d\Omega)_{\parallel}).$$
(58)

Note. The meaning of the symbols in the above equations is the following: g is interpreted as a (1, 1)-double form defined by $g(U; Q) = g(U_{\perp}, Q); (d\Omega)_{\parallel} \in \mathcal{D}^{1,0}$ is defined by $(d\Omega)_{\parallel}(U) = (d\Omega)(U_{\parallel}) = (d_{\mathcal{F}}\Omega)(U); g \wedge (d\Omega)_{\parallel} \in \mathcal{D}^{2,1}$ is defined in the usual way by $g \wedge (d\Omega)_{\parallel}(U, V; .) = g(U, .)(d\Omega)_{\parallel}(V) - g(V; .)(d\Omega)_{\parallel}(U)$ and finally $Z = \operatorname{grad}_{\perp} \Omega =$ $g^{-1}(d\Omega|\mathcal{T}, .) \in \Gamma\mathcal{T}$ is the *Transversal Gradient* of $\Omega \in C^{\infty}(M)$ (see Definition 4.13).

Definition 4.3. We call $\overline{\nabla}$, given by (57), the *Connection Conformally Associated* to ∇ , by the conformal scaling

$$g \to \bar{g} = e^{2\Omega}g, \quad \Omega \in C^{\infty}(M).$$
 (59)

Based on this class of conformally equivalent connections [10] proceeds in the construction of a conformal curvature tensor, in the following steps:

(1) First, he proves that, given a $w \in \mathcal{D}^{k+1, l+1}$ with $b = v - k - l \ge 1$, there exists only one $\delta w \in \mathcal{D}^{k, l}$ such that (see [10, Theorem 3.3])

$$\boldsymbol{c}(w-\boldsymbol{g}\wedge\delta\boldsymbol{w})=\boldsymbol{0}.$$

Here *c* means contraction: for an $\alpha \in \mathcal{D}^{k+1, l+1}$ we define $c\alpha \in \mathcal{D}^{k, l}$ by

$$\boldsymbol{c}\boldsymbol{\alpha}(U_1,\ldots,U_k;Q_1,\ldots,Q_l)=\sum_a\epsilon_a(E_a,U_1,\ldots,U_k;E_a,Q_1,\ldots,Q_l),$$

where E_a is an orthonormal frame field for ΓT and $\epsilon_a = g(E_a, E_a)$. With this, he defines a *Conformal Operator* conf : $\mathcal{D}^{k+1, l+1} \to \mathcal{D}^{k+1, l+1}$ by

$$\operatorname{conf} w = w - g \wedge \delta w \tag{60}$$

so that c(conf w) = 0.

(2) In particular, for $\mathbf{K} \in \mathcal{D}^{2,2}$ given by (51), we define the Conformal Curvature Tensor C by

$$g(\boldsymbol{C}(U, V)\boldsymbol{Q}, \boldsymbol{S}) = (\operatorname{conf} \boldsymbol{K})(U, V; \boldsymbol{Q}, \boldsymbol{S}).$$
⁽⁶¹⁾

(3) Making a conformal change in $g: g \to \overline{g} = e^{2\Omega}g, \Omega \in C^{\infty}(M)$, we can prove that

(i) $\operatorname{conf} = \overline{\operatorname{conf}}$

and that

(ii)
$$\operatorname{conf} \overline{K} = \mathrm{e}^{2\Omega} \operatorname{conf}(K - N \wedge \mathrm{d}\Omega | \mathcal{T}).$$

So, denoting by \overline{C} the conformal curvature given by (61) and constructed with $\overline{\nabla}$, given by (57), we see that

$$e^{2\Omega}(\overline{C}(U, V)Q, S) = \overline{g}(\overline{C}(U, V)Q, S)$$

= $\overline{\operatorname{conf}} \overline{K}(U, V; Q, S)$ by (61)
= $\operatorname{conf} \overline{K}(U, V; Q, S)$ by (i) above
= $e^{2\Omega} \operatorname{conf}(K - N \wedge d\Omega | T)(., .; ., .)$ by (ii) above
= $e^{2\Omega} \operatorname{conf}(., .; ., .) - e^{2\Omega}(N \wedge d\Omega | T)(., .; ., .)$

and we conclude that C is conformally invariant ($C = \overline{C}$) iff

$$\operatorname{conf}(N \wedge \mathrm{d}\Omega | \mathcal{T}) = 0, \quad \forall \Omega \in C^{\infty}(M).$$
(62)

Now comes the main point, namely, the existence of a conformally invariant conformal curvature for the transversal bundle T of \mathcal{F} , an exclusive property of conformal foliations (see [10, Theorem 4.2]). For us, the main interest is in the following theorem.

Theorem 4.4. Let $(M, \mathcal{D}, \mathcal{T}, g)$ be a conformal foliation with complementary form λ , and assume that codim $\mathcal{D} = n + 1 \ge 3$. Then there exists a unique g-Riemannian connection on (\mathcal{T}, g) such that C is conformal invariant.

Sketch of proof. Let \tilde{G} be any metric on M such that $\tilde{G}|\mathcal{T} = g$, and let $\tilde{\nabla}$ be its Levi-Cività connection. Define a connection ∇ on (\mathcal{T}, g) by the formula

$$\nabla_U Q = (\tilde{\nabla}_U Q)_{\perp} - (\tilde{\nabla}_Q U_{\parallel})_{\perp} + \frac{1}{2}\lambda(U)Q, \quad \forall U \in \mathcal{X} \text{ and } Q \in \Gamma \mathcal{T}.$$
(63)

We can prove the following facts:

(i)
$$\nabla$$
 is g-Riemannian,

(ii)
$$N = \frac{1}{2}(\lambda \wedge g),$$

(iii) $\mathbf{K}_{\parallel} = 0$ where $\mathbf{K}_{\parallel}(U, V; ..) = \mathbf{K}(U_{\parallel}, V_{\parallel}; ..)$, i.e., ∇ is Flat in longitudinal directions,

(iv) $\forall X \in \Gamma \mathcal{D}$

$$\nabla_X Q = (L_X Q)_\perp + \frac{1}{2}\lambda(X)Q. \tag{64}$$

Now we deduce, by computation, that (ii) implies (62), so that ∇ solves our problem. Conversely, (62) implies that the torsion N must be given by (ii), and so ∇ is unique. \Box

Definition 4.5. We say that the conformal foliation $(M, \mathcal{D}, \mathcal{T}, g)$ is *Conformally Flat* if, for each $m \in M$ there exists a neighborhood \mathcal{U} of m and a function $\Omega \in C^{\infty}(\mathcal{U})$ such that $\overline{K} = 0$, where \overline{K} is the curvature associated to $\overline{g} = e^{2\Omega}g$ (and to the connection given by Theorem 4.4).

Theorem 4.6. If codim $D = n + 1 \le 2$, then T is always conformally flat. For $n + 1 \ge 4$, T is conformally flat iff C = 0.

Note. The case n + 1 = 3 requires a special treatment (see [10, Theorem 4.3]).

Now we introduce some more definitions and computations, which we will use later in the quantization program. First note that $K_{\parallel} = 0$ implies that we can choose an orthonormal

longitudinal parallel transversal frame (in short, an OLPT frame) E_a , i.e., $g(E_a, E_b) = 0$, for $a \neq b$; $g(E_a, E_a) = \epsilon_a (= \pm 1)$ and $\nabla_X E_a = 0, \forall X \in \Gamma D$.

In the following, E_a always designate such an OLPT frame for ΓT , and ∇ the connection given by (63). If X_{α} is a local frame for ΓD then (64) gives

 $0 = \nabla_{X_{\alpha}} E_a = (L_{\alpha} E_a)_{\perp} + \frac{1}{2} \lambda(X_{\alpha}) E_a$

and, by (26), with $\lambda = -\Theta$

$$L_{\alpha}E_{a} = \frac{1}{2}C_{\alpha}E_{a} + \omega_{\alpha}^{\beta}(E_{a})X_{\beta}.$$
(65)

Definition 4.7. We define the *Ricci Tensor* **Ric** $\in \mathcal{D}^{1, 1}$ by the formula

$$\mathbf{Ric}(X; Q) = (\mathbf{cK})(X; Q) = \sum_{a} \epsilon_{a} \mathbf{K}(X, E_{a}; Q, E_{a}).$$
(66)

Lemma 4.8. $\operatorname{Ric}(X; Q) = \frac{1}{2}n \, \mathrm{d}\Theta(X, Q).$

Proof. We make use of the following identity from [10]:

cyclsum $K(X, Y; Z_{\perp}, .) = -\frac{1}{2}$ cyclsum d $\Theta(X, Y)g(Z_{\perp}, .)$

to compute $K(X, E_a; Q, E_a)$. We have that

$$\mathbf{K}(X, E_a; Q, E_a) = -\frac{1}{2} \,\mathrm{d}\Theta(X, E_a)g(Q, E_a) - \frac{1}{2} \,\epsilon_a \mathrm{d}\Theta(Q, X).$$

Multiplying by ϵ_a and summing over a = 1, ..., n, we get easily the result, using $\sum_a \epsilon_a g(Q, E_a) E_a = Q$.

Definition 4.9. For $Q \in \Gamma T$ we define the *Transversal Divergence* of Q, as the function

$$\operatorname{div}_{\perp} Q = \sum_{a} \epsilon_{a} g(\nabla_{E_{a}} Q, E_{a}).$$
(67)

Lemma 4.10.

$$X_{\alpha} \cdot \operatorname{div}_{\perp} U_{\perp} = C_{\alpha} \operatorname{div}_{\perp} U_{\perp} + \frac{1}{2}(n-1) \operatorname{d}\Theta(X_{\alpha}, U_{\perp}).$$
(68)

Proof. Omiting the symbols \sum_a and \perp in U_{\perp} and \mathbf{div}_{\perp} , we have

$$\begin{aligned} X_{\alpha} \cdot \mathbf{div} \ U &= X_{\alpha} \cdot \epsilon_{a} g(\nabla_{E_{a}} U, E_{a}) \\ &= \epsilon_{a} g(\nabla_{X_{\alpha}} \nabla_{E_{a}} U, E_{a}) + \epsilon_{a} g(\nabla_{E_{a}} U, \nabla_{X_{\alpha}} E_{a}) \\ &= \epsilon_{a} g(\nabla_{E_{a}} \nabla_{X_{\alpha}} U + \nabla_{[X_{\alpha}, E_{a}]} U + \mathbf{R}(X_{\alpha}, E_{a}) U, E_{a}) \\ &= \epsilon_{a} g(\nabla_{E_{a}}(\frac{1}{2}C_{\alpha} U), E_{a}) + \epsilon_{a} g(\nabla_{1/2}C_{\alpha} E_{a} + \omega_{\alpha}^{\beta}(E_{a}) X_{\beta} U, E_{a}) \\ &+ \mathbf{Ric}(X_{\alpha}; U), \end{aligned}$$

where we have used (65) for $L_{\alpha}E_a = [X_{\alpha}, E_a]$ and the fact that $\nabla_{X_{\alpha}}U = \frac{1}{2}C_{\alpha}U$ (use (64) together with (24)). So, computing we obtain

J.N. Tavares / Journal of Geometry and Physics 18 (1996) 381-402

$$\begin{split} X_{\alpha} \cdot \operatorname{div} U &= \frac{1}{2} \epsilon_{a} g((E_{a} \cdot C_{\alpha})U + C_{\alpha} \nabla_{E_{a}}U, E_{a}) + \frac{1}{2} \epsilon_{a} g(C_{\alpha} \nabla_{E_{a}}U, E_{a}) \\ &+ \epsilon_{a} \omega_{\alpha}^{\beta}(E_{a}) g(\nabla_{X_{\beta}}U, E_{a}) + \operatorname{Ric}(X_{\alpha}, U) \\ &= \frac{1}{2} \epsilon_{a} \operatorname{d} C_{\alpha}(E_{a}) g(U, E_{a}) + \frac{1}{2} \epsilon_{a} C_{\alpha} g(\nabla_{E_{a}}U, E_{a}) + \frac{1}{2} \epsilon_{a} C_{\alpha} g(\nabla_{E_{a}}U, E_{a}) \\ &+ \epsilon_{a} \omega_{\alpha}^{\beta}(E_{a}) g(\frac{1}{2}C_{\beta}U, E_{a}) + \operatorname{Ric}(X_{\alpha}; U) \\ &= \frac{1}{2} \operatorname{d} C_{\alpha}(U) + \frac{1}{2} C_{\beta} \omega_{\alpha}^{\beta}(U) + C_{\alpha} \operatorname{div} U + \operatorname{Ric}(X_{\alpha}; U) \\ &= \frac{1}{2} \operatorname{d} \Theta(U, X_{\alpha}) + C_{\alpha} \operatorname{div} U + \operatorname{Ric}(X_{\alpha}; U), \end{split}$$

where we have used the following:

$$U \cdot C_{\alpha} = U(\Theta(X_{\alpha}))$$

= $(L_U \Theta)(X_{\alpha}) + \Theta([U, X_{\alpha}])$
= $(i_U d\Theta + di_U \Theta)(X_{\alpha}) + \Theta(-C_{\alpha}U - C_{\alpha}^{\beta}X_{\beta})$
= $d\Theta(U, X_{\alpha}) - C_{\beta}C_{\alpha}^{\beta}$ (69)

with $C^{\beta}_{\alpha} = \omega^{\beta}_{\alpha}(U)$.

Finally, using Lemma 4.8, we obtain

$$\begin{aligned} X_{\alpha} \cdot \operatorname{div} U &= C_{\alpha} \operatorname{div} U + \frac{1}{2} \operatorname{d}\Theta(U, X_{\alpha}) + \frac{1}{2}n \operatorname{d}\Theta(X_{\alpha}, U) \\ &= C_{\alpha} \operatorname{div} U + \frac{1}{2}(n-1) \operatorname{d}\Theta(X_{\alpha}, U). \end{aligned}$$

Finally, we want to define a kind of scalar curvature for the connection ∇ , given by (63).

Definition 4.11. We define the *Scalar Curvature* of ∇ by

$$S = c \circ c K = c \operatorname{Ric}.$$

We need the longitudinal derivative of S, $X_{\alpha} \cdot S$. For this, we first recall the Bianchi Identity for the connection ∇ on (\mathcal{T}, g) (see [13, p.89])

$$\operatorname{cycl}_{(U,V,W)} \nabla_U \boldsymbol{R}(V,W) = \operatorname{cycl}_{(U,V,W)} \boldsymbol{R}([U,V],W).$$
(70)

Recall that $(\nabla_U \mathbf{R}(V, W))(Q) = \nabla_U (\mathbf{R}(V, W)Q) - \mathbf{R}(V, W)(\nabla_U Q)$. Taking the inner product with another $S \in \Gamma T$, and using the properties of ∇ , we easily see that we can write Bianchi's Identity in the form

$$cycl_{(U, V, W)}(U \cdot K(V, W; Q, S) - K(V, W; Q, \nabla_U S) - K(V, W; \nabla_U Q, S)) = cycl_{(U, V, W)}(K([U, V], W; Q, S)).$$
(71)

Now put $U = X_{\alpha}$, $V = E_c$, $W = E_d$, $Q = E_a$, $S = E_b$ in (71) and compute the contractions in the pairs of indices (d, b) and (c, a), respectively, using formula (69) and the fact that $N_{\perp} = 0$ (see Definition 4.2(ii)). After a tedious calculation we conclude with the following lemma.

Lemma 4.12.

$$X_{\alpha}S = C_{\alpha}S - n(2V_{\alpha}^{\beta} \cdot C_{\beta} + C_{\beta}\operatorname{div}_{\perp}V_{\alpha}^{\beta} + C_{\beta}\omega_{\gamma}^{\beta}(V_{\alpha}^{\gamma}) + \Delta C_{\alpha}),$$
(72)

where

$$V_{\alpha}^{\beta} = \sum_{a} \epsilon_{a} \omega_{\alpha}^{\beta}(E_{a}) E_{a} = \eta^{ac} \omega_{\alpha}^{\beta}(E_{c}) E_{a}$$
(73)

is the transversal vector field metric-equivalent to the 1-form ω_{α}^{β} , and ΔC_{α} is the Transversal Laplacian of C_{α} , defined in the following definition.

Definition 4.13. For a function $\phi \in C^{\infty}(M)$ we define its *Transversal Laplacian* Δ by

$$\Delta \phi = \operatorname{div}_{\perp} \operatorname{grad}_{\perp} \phi \tag{74}$$

where $\operatorname{grad}_{\perp}\phi = \sum_{a} \epsilon_{a} \operatorname{d}\phi(E_{a})E_{a} = \eta^{ab}(E_{a} \cdot \phi)E_{b}$ is the *Transversal Gradient* of ϕ .

We can compute that

$$\Delta \phi = \sum_{a} \epsilon_{a} g(\nabla_{E_{a}} \operatorname{grad}_{\perp} \phi, E_{a})$$
(75)

$$=\eta^{ab}(E_a E_b - \nabla_{E_a} E_b)\phi. \tag{76}$$

5. Quantization

When we face the problem of quantizing a gauge system, two different approaches are conceivable, in principle. We can reduce the gauge system to the physical system (if possible) and quantize or, either, quantize the gauge system directly and then reduce by some *Quantum Reduction Process*. Hopefully, these two processes must be consistent, i.e., schematically the following diagram must commute: (see discussion in [8,5])

As we have seen in the preceding sections, the reduced physical system (when exists) is characterized by a conformal class of physical superhamiltonians,

$$h = e^w (g + J_u + v), \quad w \in C^\infty(m)$$

J.N. Tavares / Journal of Geometry and Physics 18 (1996) 381-402

Moreover, the dynamical constraint remains after reduction: h = 0. So, the proper way of quantizing this relativistic physical system is through a *Conformal Klein–Gordon* type equation.

Note. Recall that an equation of type $\mathcal{D}_g \Phi = 0$, for a field Φ (where \mathcal{D}_g is an operator constructed from the metric g), is called *Conformally Invariant* if there exists a number $k \in \mathbb{R}$ (called the *Conformal Weight of the Equation or of the Field*) such that Φ is a solution of $\mathcal{D}_g \Phi = 0$ if and only if $\overline{\Phi} = e^{k\Omega} \Phi$ is a solution of $\mathcal{D}_{\overline{g}} \overline{\Phi} = 0$, where $\mathcal{D}_{\overline{g}}$ is the same operator but now constructed from the metric $\overline{g} = e^{\Omega} g$, (see [17]).

Now we define the Quantum Operators corresponding, respectively to g, J_u and v, by

$$\hat{\boldsymbol{g}} = -\Delta_c = -\Delta_g - \xi \boldsymbol{S}_g,\tag{77}$$

$$\hat{J}_{u} = (1/i) \left(u + \frac{1}{2} \operatorname{div}_{g} u \right),$$
 (78)

$$\hat{\mathbf{v}} = \mathbf{v} \tag{79}$$

acting on $C^{\infty}(m)$, where $\Delta_c \equiv \Delta_g + \xi S_g$ is the Conformal Laplacian of the metric g (here, Δ_g and S_g are, respectively, the usual Laplacian and scalar curvature of g), and $\xi = (n-1)/4n$.

Then it is easy to see that the Conformal Klein-Gordon Equation

$$\hat{\boldsymbol{h}}\boldsymbol{\psi} = (\hat{\boldsymbol{g}} + \hat{\boldsymbol{J}}_u + \hat{\boldsymbol{v}})\boldsymbol{\psi} = 0 \tag{80}$$

is conformally invariant with weight k = (n - 1)/4.

Of course, now we must face the problem of the possibility of construction of an Hilbert space from solutions of (80), as well as the interpretation of the theory (one-particle, second quantization, etc.) (see [7,2], for which we defer the discussion of these subjects).

What about Constraint Quantization? Here we adopt Kuchař's philosophy, reinforced by the essential unique character of the objects defined in Section 4, namely, the connection ∇ , the corresponding scalar curvature S (Definition 4.11) and transversal Laplacian Δ (Definition 4.13).

So, we quantize the supermomentum constraints H_{α} by the following operators:

$$\hat{H}_{\alpha} = (1/i) \left(X_{\alpha} - kC_{\alpha} \right) \tag{81}$$

and the transversal superhamiltonian H_{\perp} , by

$$\hat{\boldsymbol{H}}_{\perp} = \hat{\boldsymbol{g}} + \hat{\boldsymbol{J}}_{U_{\perp}} + \hat{\boldsymbol{V}}$$
(82)

with

$$\hat{\boldsymbol{g}} = -\boldsymbol{\Delta} - \boldsymbol{\xi} \boldsymbol{S},\tag{83}$$

$$\hat{\boldsymbol{J}}_{U_{\perp}} = (1/\mathbf{i}) \left(U_{\perp} + \frac{1}{2} \operatorname{div}_{\perp} U_{\perp} \right), \tag{84}$$

$$\mathbf{v} = \mathbf{v},\tag{85}$$

acting on $C^{\infty}(M)$.

Then the classical constraints are imposed at quantum level as the Quantum Constraints

$$\hat{H}_{\alpha}\psi = 0 = \hat{H}_{\perp}\psi, \quad \psi \in C^{\infty}(M).$$
(86)

As we have said, this *Quantum Reduction Process* must be consistent with the first approach to quantization (see discussion in [8,5]). This is implied by the following lemmas and theorems.

Theorem 5.1.

$$(1/i)\left[\hat{H}_{\alpha},\hat{H}_{\beta}\right]=\Gamma_{\alpha\beta}^{\gamma}\hat{H}_{\gamma},$$

where $\Gamma^{\gamma}_{\alpha\beta} \in C^{\infty}(M)$ are given by (9).

Proof. Compute, using definitions and (37).

Lemma 5.2.

$$(1/i) [\hat{J}_{U_{\perp}}, \hat{H}_{\alpha}] = C_{\alpha} \hat{J}_{U_{\perp}} + \omega_{\alpha}^{\beta} (U_{\perp}) \hat{H}_{\beta},$$

where $C_{\alpha} = \Theta(X_{\alpha})$ and $\omega_{\alpha}^{\beta}(U_{\perp})$ is given by (30).

Proof. Using definition (84) we compute the commutator in the LHS of the above equation, and conclude that

$$(1/\mathbf{i}) [\hat{\boldsymbol{J}}_{U_{\perp}}, \hat{\boldsymbol{H}}_{\alpha}] \boldsymbol{\phi} = (C_{\alpha} \hat{\boldsymbol{J}}_{U_{\perp}} + \omega_{\alpha}^{\beta} (U_{\perp}) \hat{\boldsymbol{H}}_{\beta}) \boldsymbol{\psi} + (k/\mathbf{i}) (U_{\perp} \cdot C_{\alpha} + \omega_{\alpha}^{\beta} (U_{\perp}) C_{\beta}) + \frac{1}{2} (X_{\alpha} \cdot \operatorname{div}_{\perp} U_{\perp} - C_{\alpha} \operatorname{div}_{\perp} U_{\perp}) \boldsymbol{\psi}.$$

However, by (69), $U_{\perp} \cdot C_{\alpha} + C_{\beta}\omega_{\alpha}^{\beta}(U_{\perp}) = d\Theta(U_{\perp}, X_{\alpha})$, while Lemma 4.10 gives $X_{\alpha} \cdot \mathbf{div}_{\perp}U_{\perp} = C_{\alpha} \mathbf{div}_{\perp}U_{\perp} + \frac{1}{2}(n-1) d\Theta(X_{\alpha}, U_{\perp})$, and so we see that the last sum in the RHS is zero.

Lemma 5.3.

$$(1/i) \left[\hat{\boldsymbol{g}}, \hat{\boldsymbol{H}}_{\alpha} \right] = C_{\alpha} \hat{\boldsymbol{g}} + 2(\hat{\boldsymbol{V}}_{\alpha}^{\beta} - \frac{1}{2}i \,\omega_{\gamma}^{\beta}(\boldsymbol{V}_{\alpha}^{\gamma})) \hat{\boldsymbol{H}}_{\beta},$$

where V_{α}^{β} is defined in (73), and, as usual (see [1])

$$\hat{V}^{\beta}_{\alpha} = (1/i) \left(V^{\beta}_{\alpha} + \frac{1}{2} \operatorname{div}_{\perp} V^{\beta}_{\alpha} \right)$$
(87)

with $\mathbf{div}_{\perp} V_{\alpha}^{\beta}$ as in Definition 4.9, Eq. (67).

Proof. First we compute that

$$(1/i) \left[\hat{\boldsymbol{g}}, \hat{\boldsymbol{H}}_{\alpha} \right] = \left[\boldsymbol{\Delta}, X_{\alpha} \right] - k \left[\boldsymbol{\Delta}, C_{\alpha} \right] + \xi \left[\boldsymbol{S}, X_{\alpha} \right]$$
(88)

and it is easy to see that

$$[\mathbf{\Delta}, C_{\alpha}] = 2i \, \widehat{\mathbf{grad}}_{\perp} C_{\alpha} = 2(\mathbf{grad}_{\perp} C_{\alpha} + \frac{1}{2} \, \mathbf{\Delta} C_{\alpha}) \tag{89}$$

and

$$[S, X_{\alpha}] = -X_{\alpha} \cdot S. \tag{90}$$

So we must compute $[\Delta, X_{\alpha}]$. For this, we use Eqs. (75), (76) for $\Delta \phi$ and compute that

$$[\mathbf{\Delta}, X_{\alpha}]\phi = \eta^{ab}(E_a E_b X_{\alpha} - X_{\alpha} E_a E_b)\phi + \eta^{ab}(X_{\alpha} \nabla_{E_a} E_b - \nabla_{E_a} E_b X_{\alpha})\phi.$$
(91)

Now we commute the derivatives and use systematically (65), to get

$$X_{\alpha}E_{a}E_{b}\phi = E_{a}E_{b}X_{\alpha}\phi + C_{\alpha}E_{a}E_{b}\phi + \frac{1}{2}(E_{a}\cdot C_{\alpha})E_{b}\phi + \omega_{\alpha}^{\beta}(E_{b})E_{a}X_{\beta}\phi + (E_{a}\cdot\omega_{\alpha}^{\beta}(E_{b}))X_{\beta}\phi + \omega_{\alpha}^{\beta}(E_{a})E_{b}X_{\beta}\phi + \frac{1}{2}C_{\beta}\omega_{\alpha}^{\beta}(E_{\alpha})E_{b}\phi + \omega_{\alpha}^{\beta}(E_{a})\omega_{\beta}^{\gamma}(E_{b})X_{\gamma}\phi$$

and

$$(X_{\alpha}\nabla_{E_{a}}E_{b}-\nabla_{E_{a}}E_{b}X_{\alpha})\phi=(C_{\alpha}\nabla_{E_{a}}E_{b}+\mathbf{R}(X_{\alpha},E_{a})E_{b}+\omega_{\alpha}^{\beta}(\nabla_{E_{a}}E_{b})X_{\beta})\phi$$

Substituting these last two identities in (91), we obtain

$$[\mathbf{\Delta}, X_{\alpha}]\phi = -C_{\alpha} \,\mathbf{\Delta}\phi - (2V_{\alpha}^{\beta} + \mathbf{div}_{\perp}V_{\alpha}^{\beta} + \omega_{\gamma}^{\beta}(V_{\alpha}^{\gamma}))X_{\beta}\phi -\frac{1}{2}(\mathbf{grad}_{\perp}C_{\alpha} + C_{\beta}V_{\alpha}^{\beta} - 2\eta^{ab}\mathbf{R}(X_{\alpha}, E_{a})E_{b}).$$

Now we use the fact

$$\eta^{ab} \mathbf{R}(X_{\alpha}, E_{a}) E_{b} = \eta^{ab} \sum_{c} \epsilon_{c} \mathbf{K}(X_{\alpha}, E_{a}; E_{b}, E_{c}) E_{c}$$
$$= -\sum_{c} \epsilon_{c} \eta^{ab} \mathbf{K}(X_{\alpha}, E_{a}; E_{b}, E_{c}) E_{c}$$
$$= \frac{1}{2} n \sum_{c} \epsilon_{c} (E_{c} \cdot C_{\alpha} + C_{\beta} \omega_{\alpha}^{\beta}(E_{c})) E_{c}$$
$$= \frac{1}{2} n (\operatorname{grad}_{\perp} C_{\alpha} + C_{\beta} V_{\alpha}^{\beta}),$$

where we have used (69), Lemma 4.10 and (73).

By [13, p. 151], we have

$$\mathbf{div}_{\perp}V_{\alpha}^{\beta} = \mathbf{div}_{\perp}\omega_{\alpha}^{\beta} = \eta^{ab}(\nabla_{E_{a}}\omega_{\alpha}^{\beta})(E_{b}) = \eta^{ab}(E_{a}\cdot\omega_{\alpha}^{\beta}(E_{b}) - \omega_{\alpha}^{\beta}(\nabla_{E_{a}}E_{b}))$$

and so, substituting and calculating, we have

$$[\mathbf{\Delta}, X_{\alpha}]\phi = -C_{\alpha}\mathbf{\Delta}\phi - C_{\alpha}\xi S\phi + 2(\hat{V}_{\alpha}^{\beta} - \frac{1}{2}\mathrm{i}\,\omega_{\gamma}^{\beta}(V_{\alpha}^{\gamma}))\hat{H}_{\beta}\phi$$
$$-k(2V_{\alpha}^{\beta} \cdot C_{\beta} + C_{\beta}\,\mathrm{div}_{\perp}V_{\alpha}^{\beta} + C_{\beta}\omega_{\gamma}^{\beta}(V_{\alpha}^{\gamma}))\phi$$
$$+2k\,\mathrm{grad}_{\perp}C_{\alpha}\phi + C_{\alpha}\xi S\phi.$$

By (89)-(91), we have

$$(1/i) [\hat{g}, \hat{H}_{\alpha}] \phi = C_{\alpha} \hat{g} \phi + 2(\hat{V}_{\alpha}^{\beta} - \frac{1}{2} i \omega_{\gamma}^{\beta} (V_{\alpha}^{\gamma})) \hat{H}_{\beta} \phi$$

$$= -k(2V_{\alpha}^{\beta} \cdot C_{\beta} + C_{\beta} \operatorname{div}_{\perp} V_{\alpha}^{\beta} + C_{\beta} \omega_{\gamma}^{\beta} (V_{\alpha}^{\gamma})) \phi$$

$$+ C_{\alpha} \xi S \phi - k \Delta C_{\alpha} - \xi (X_{\alpha} \cdot S) \phi$$

and so, it suffices to prove that

$$\xi X_{\alpha} \cdot S = \xi C_{\alpha} S - k(2V_{\alpha}^{\beta} \cdot C_{\beta} + C_{\beta} \operatorname{div}_{\perp} V_{\alpha}^{\beta} + C_{\beta} \omega_{\gamma}^{\beta} (V_{\alpha}^{\gamma}) + \Delta C_{\alpha})$$

which is precisely Lemma 4.12.

Now, collecting the above two lemmas, together with (13), we finally have the following theorem.

Theorem 5.4.

$$(1/i) [\hat{H}_{\perp}, \hat{H}_{\alpha}] = C_{\alpha} \hat{H}_{\perp} + C_{\alpha}^{\beta} \hat{H}_{\beta},$$

where $C_{\alpha}^{\beta} = 2\hat{V}_{\alpha}^{\beta} - i\omega_{\gamma}^{\beta}(V_{\alpha}^{\gamma}) + \omega_{\alpha}^{\beta}(U_{\perp}).$

So, Theorems 5.1 and 5.4 show that we have a closed commutator algebra of quantum operator constraints, with the structure functions appearing on the left of that quantum operators. This implies the consistency of the above quantization process. Moreover, we recover the physical theory described by the *Conformal Klein–Gordon Equation* (80). In fact, start with a wave function $\Psi \in C^{\infty}(M)$ that solves the quantum constraints (86). Assume also that the foliation \mathcal{F} is simple, and that Θ is $d_{\mathcal{F}} - exact$, i.e., $\exists \Omega \in C^{\infty}(M)$ such that $\Theta = -d_{\mathcal{F}}\Omega$. Then we easily prove that the rescaled wave function $\overline{\Psi} = e^{k\Omega\Psi}$ is a basic function and so, descends to a wave function $\overline{\Psi} \in C^{\infty}(m)$. Now, as in [6], we can prove that the transversal superhamiltonian \hat{H}_{\perp} has conformal weight 1, when acting on wave functions of conformal weight k, i.e.,

$$\overline{\widehat{H}}_{\perp}\overline{\widehat{\Psi}} = e^{(k+1)\Omega}\widehat{H}_{\perp}\Psi, \qquad (92)$$

where $\overline{\Psi} = e^{k\Omega}\Psi$, and $\hat{\overline{H}}_{\perp}$ is the transversal superhamiltonian constructed from the rescaled metric $\overline{g} = e^{\Omega}g$. So we see that (86) $\Rightarrow \hat{H}_{\perp}\Psi = 0 \Rightarrow \overline{\overline{H}}_{\perp}\overline{\Psi} = 0$, and, since $\overline{\Psi}$ is basic, this equation implies that

$$\bar{\boldsymbol{h}}\,\overline{\boldsymbol{\psi}}=\boldsymbol{0},\tag{93}$$

where $\overline{\psi}$ is the induced wave function on *m*. In this way, we recover the physical conformal Klein–Gordon equation (80).

Appendix A

Hereafter we adopt the following notations, related to decompositions (21)-(24):

 Q^A are local coordinates on M. $\partial_A = \partial/\partial Q^A$, and $\partial^A = dQ^A$, A = 0, ..., N. $X_{\alpha} = X^A_{\alpha} \partial_A$, a local frame field for $\Gamma \mathcal{D}, \alpha = 1, ..., v$. $Q_a = Q^A_a \partial_A$, a local frame field for $\Gamma \mathcal{T}, a = 0, ..., n$. $(\theta^{\alpha}, \theta^a)$, a dual coframe for $\mathcal{D} \oplus \mathcal{T}$, so that $\theta^{\alpha} \in \Gamma \mathcal{D}^*, \theta^a \in \Gamma \mathcal{T}^* \cong \Gamma \mathcal{D}^0$ (we may

 $(\theta^{\alpha}, \theta^{a})$, a dual coframe for $\mathcal{D} \oplus \mathcal{T}$, so that $\theta^{\alpha} \in I^{*}\mathcal{D}^{*}, \theta^{a} \in I^{*}\mathcal{T}^{*} \cong I^{*}\mathcal{D}^{0}$ (we may assume that θ^{a} are closed 1-forms), $\theta^{\alpha}(X_{\beta}) = \delta^{\alpha}_{\beta}, \theta^{a}(Q_{b}) = \delta^{a}_{b}, \theta^{\alpha}(Q_{a}) = 0 = \theta^{a}(X_{\alpha}).$

$$G = G^{AB} \partial_A \otimes \partial_B$$
, a contravariant metric on M .
 $\tilde{g} = G | (\mathcal{D}^0 \cong \mathcal{T}^*).$

The projector $P_{\perp}: TM \to T$ can be written in the form

$$P_{\perp} = Q_a \otimes \theta^a(\cdot) = Q_a^B Q_A^a \partial_B \otimes \partial^A = \mathcal{P}_A^B \partial_B \otimes \partial^A$$

and the transversal metric G_{\perp} is

$$G_{\perp} = P_{\perp} \otimes P_{\perp}(G) = Q_a \otimes \theta^a \otimes Q_b \otimes \theta^b(G^{AB}\partial_A \otimes \partial_B)$$

= $G^{AB}Q_a^C Q_A^a Q_b^E Q_B^b \partial_C \otimes \partial_E = G^{AB}\mathcal{P}_A^C \mathcal{P}_B^E \partial_C \otimes \partial_E.$

From

$$\tilde{g}^{ab} = G(\theta^a, \theta^b) = G^{AB} \partial_A \otimes \partial_B(Q^a_C \partial^C, Q^b_D \partial^D) = G^{AB} Q^a_A Q^b_B,$$

we can also write

$$G_{\perp} = \tilde{g}^{ab} Q_a^C Q_b^E \partial_C \otimes \partial_E. \tag{94}$$

Now it is easy to see that

$$L_{\alpha}\theta^a \in \mathcal{D}^0 \cong \mathcal{T}^*, \quad \forall \alpha, a.$$
 (95)

We compute now $L_{\alpha}P_{\perp} = L_{\alpha}(Q_a \otimes \theta^a)$: first we decompose $L_{\alpha}Q_a = t_{\alpha a}^b Q_b + l_{\alpha a}^{\beta} X_{\beta}$. However, we have

$$0 = L_{\alpha} \langle \theta^{b}, Q_{a} \rangle = \langle L_{\alpha} \theta^{b}, Q_{a} \rangle + \langle \theta^{b}, L_{\alpha} Q_{a} \rangle$$

and by (94), we can put $L_{\alpha}\theta^{b} = r_{\alpha d}^{b}\theta^{d}$ and deduce, from the last equation, that $t_{\alpha a}^{b} = -r_{\alpha a}^{b}$. So, reuniting these information, we easily compute that

$$L_{\alpha}P_{\perp} = l^{\beta}_{\alpha a} X_{\beta} \otimes \theta^{a}, \tag{96}$$

where $l_{\alpha a}^{\beta} = \theta^{\beta} (L_{\alpha} Q_a)$.

Now we compute $L_{\alpha}U_{\perp}$, with $U_{\perp} = P_{\perp}(U)$ and $U \in \mathcal{X}(M)$. By (28)

$$L_{\alpha}U_{\perp} = L_{\alpha}(P_{\perp} \bullet U)$$

= $(L_{\alpha}P_{\perp}) \bullet U + P_{\perp} \bullet (L_{\alpha}U)$
= $(l_{\alpha a}^{\beta}X_{\beta} \otimes \theta^{a})(u^{a}Q_{a} + u^{\beta}X_{\beta}) + P_{\perp}(C_{\alpha} + \text{long. vector})$ by (12)
= $l_{\alpha a}^{\beta}u^{a}X_{\beta} + C_{\alpha}U_{\perp}$,

and recalling the definition of the 1-form ω_{α}^{β} in (29), it is easy to see that $\omega_{\alpha}^{\beta} = l_{\alpha a}^{\beta} \theta^{a}$ and so we can write $L_{\alpha}U_{\perp}$ also in the form (30).

Now we compute $L_{\alpha}G_{\perp}$. Again by (28), we have, with $\mathcal{P}_{\perp} = P_{\perp} \otimes P_{\perp}$

$$L_{\alpha}G_{\perp} = L_{\alpha}(\mathcal{P}_{\perp} \bullet G)$$
$$= \mathcal{P}_{\perp} \bullet (L_{\alpha}G) + (L_{\alpha}\mathcal{P}_{\perp}) \bullet G$$

$$= \mathcal{P}_{\perp} \bullet (C_{\alpha}G + \operatorname{terms} \operatorname{in} I) + L_{\alpha}(P_{\perp} \otimes P_{\perp}) \bullet G$$

$$= C_{\alpha}G_{\perp} + (L_{\alpha}P_{\perp} \otimes P_{\perp} + P_{\perp} \otimes L_{\alpha}P_{\perp}) \bullet G$$

$$= C_{\alpha}G_{\perp} + l_{\alpha a}^{\beta}X_{\beta} \otimes \theta^{a} \otimes Q_{b} \otimes \theta^{b} + Q_{b} \otimes \theta^{b}$$

$$\otimes l_{\alpha a}^{\beta}X_{\beta} \otimes \theta^{a}(\tilde{g}^{cd}Q_{c} \otimes Q_{d})$$

$$= C_{\alpha}G_{\perp} + l_{\alpha a}^{\beta}\tilde{g}^{ab}X_{\beta} \otimes Q_{b} + l_{\alpha a}^{\beta}\tilde{g}^{ba}Q_{b} \otimes X_{\beta},$$

where we have used (11) and the fact that $\theta^a \in \mathcal{D}^0$. Now, let $V_{\alpha}^{\beta} = G(\omega_{\alpha}^{\beta}, .) \in \Gamma \mathcal{T}$ the transversal vector field, metric-equivalent to the transversal 1-form ω_{α}^{β} , given by (29). We compute that $V_{\alpha}^{\beta} = l_{\alpha a}^{\beta} \tilde{g}^{ab} Q_b$, and so we see that we can write $L_{\alpha} G_{\perp}$ in the form (31).

As in Section 3, we assume that $\tilde{g} = G | D^0 = G_\perp | D^0$ is nondegenerate, and let g be the corresponding transversal covariant metric on \mathcal{T} . We want to compute $L_{\alpha g}$. For this, we first note that $L_{\alpha g}$ must be a covariant transversal vector field, since $g = g_{ab}\theta^a \otimes \theta^b$ and $L_{\alpha}\theta^a \in D^0$. So, we compute $(L_{\alpha}\tilde{g})|\mathcal{T}$, since it suffices to compute $L_{\alpha g}$. We have

$$(L_{\alpha}\tilde{g})(\theta^{a},\theta^{b}) = (L_{\alpha}G_{\perp})(\theta^{a},\theta^{b})$$

= $(C_{\alpha}G_{\perp} + V_{\alpha}^{\beta} \vee X_{\beta})(\theta^{a},\theta^{b})$
= $C_{\alpha}G_{\perp}(\theta^{a},\theta^{b})$ since $\theta^{a} \in \mathcal{D}^{0}$
= $C_{\alpha}\tilde{g}(\theta^{a},\theta^{b})$ by (94)

and so, defining $L_{\alpha}g$ as

$$(L_{\alpha}g)(Q_a, Q_b) = g_{ac}g_{bd}(L_{\alpha}\tilde{g})(\theta^a, \theta^b)$$
(97)

we conclude that $L_{\alpha}g = -C_{\alpha}g$. Notice that if G is a covariant metric on M, such that $G(\mathcal{D}, \mathcal{T}) = 0$, then definition (97) of $L_{\alpha}g$ is equivalent to

$$(L_{\alpha}g)(Q_a, Q_b) = (L_{\alpha}G)(Q_a, Q_b).$$
(98)

Acknowledgements

The author is extremely grateful to J. Mourão for many helpful comments and criticisms which substantially improved the presentation.

References

- R. Abraham and J.E. Marsden, *Foundations of Mechanics*, 2nd Ed. (Benjamin Cummings, Menlo Park, CA, 1978).
- [2] A. Ashtekar and A. Magnon, Quantum fields in curved spacetimes, Proc. R. Soc. London A 346 (1975) 375–394.
- [3] M.J. Gotay, Constraints, reduction and quantization, J. Math. Phys. 27(8) (1986) 2051-2066.
- [4] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, Cambridge, 1984).
- [5] P. Hájicěk and K. Kuchař, Constraint quantization of parametrized relativistic gauge systems in curved spacetimes, Phys. Rev. D 41(4) (1990) 1091–1104.

- [6] P. Hájicčk and K. Kuchař, Transversal affine connection and quantization of gauge systems, J. Math. Phys. 31(7) (1990) 1723-1732.
- [7] K. Kuchař, Canonical methods of quantization, in: *Quantum Gravity*, eds. C.J. Isham and R. Penrose, Vol. 2 (Oxford, 1980).
- [8] K. Kuchař, Covariant factor ordering of gauge systems, Phys. Rev. D 34(10) (1986) 3044-3057.
- [9] P. Molino, Riemannian foliations, in: Progress in Mathematics, Vol. 73 (Birkhauser, Basel, 1988).
- [10] A. Montesinos, Conformal curvature for the normal bundle of a conformal foliation, Ann. Inst. Fourier (Grenoble) 32(3) (1982) 261–274.
- [11] A. Montesinos, On certain classes of almost product structures, Michigan Math. J. 30 (1983) 31-36.
- [12] B. O'Neill, Semi-Riemannian Geometry (Academic Press, New York, 1983).
- [13] W.A. Poor, Differential Geometric Structures (McGraw-Hill, New York, 1981).
- [14] I. Vaisman, Conformal foliations, Kodai Math. J. 2 (1979) 26-37.
- [15] I. Vaisman, Variétés Riemannienes Feuilletées, Czechoslovak Math. J. 21 (96) (1971) 46-75.
- [16] I. Vaisman, Cohomology and Differential Forms (Marcel Dekker, New York, 1973).
- [17] R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).